skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dehdashti, Esmaeil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract We theoretically study forced convection heat transfer from a single particle in uniform laminar flows. Asymptotic limits of small and large Peclet numbers Pe are considered. For Pe≪1 (diffusion-dominated regime) and a constant heat flux boundary condition on the surface of the particle, we derive a closed-form expression for the heat transfer coefficient that is valid for arbitrary particle shapes and Reynolds numbers, as long as the flow is incompressible. Remarkably, our formula for the average Nusselt number Nu has an identical form to the one obtained by Brenner for a uniform temperature boundary condition (Chem. Eng. Sci., vol. 18, 1963, pp. 109–122). We also present a framework for calculating the average Nu of axisymmetric and two-dimensional (2D) objects with a constant heat flux surface condition in the limits of Pe≫1 and small or moderate Reynolds numbers. Specific results are presented for the heat transfer from spheroidal particles in Stokes flow. 
    more » « less