skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forced Convection Heat Transfer From a Particle at Small and Large Peclet Numbers
Abstract We theoretically study forced convection heat transfer from a single particle in uniform laminar flows. Asymptotic limits of small and large Peclet numbers Pe are considered. For Pe≪1 (diffusion-dominated regime) and a constant heat flux boundary condition on the surface of the particle, we derive a closed-form expression for the heat transfer coefficient that is valid for arbitrary particle shapes and Reynolds numbers, as long as the flow is incompressible. Remarkably, our formula for the average Nusselt number Nu has an identical form to the one obtained by Brenner for a uniform temperature boundary condition (Chem. Eng. Sci., vol. 18, 1963, pp. 109–122). We also present a framework for calculating the average Nu of axisymmetric and two-dimensional (2D) objects with a constant heat flux surface condition in the limits of Pe≫1 and small or moderate Reynolds numbers. Specific results are presented for the heat transfer from spheroidal particles in Stokes flow.  more » « less
Award ID(s):
1749634
PAR ID:
10184248
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Heat Transfer
Volume:
142
Issue:
6
ISSN:
0022-1481
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A simple, flow-physics-based model of flat-plate, transitional boundary layer skin friction and heat transfer is presented. The model is based on the assumption of negligible time-, spanwise-, and streamwise-average wall-normal velocity at the top of the boundary layer. This results in a threefold increase in boundary layer thickness over the transition region. This simple velocity assumption and its boundary-layer growth implications seem to be reasonably consistent with more sophisticated (direct numerical simulation (DNS)) modeling simulations. Only two modeling parameters need to be assumed, the Reynolds numbers at the onset and at the completion of transition, for which there is guidance based on freestream turbulence intensity for smooth plates. Several experimental datasets for air are modeled. New criteria are proposed to help define the onset and completion of transition: zero net vertical (wall-normal) velocity or mass flux (integrated in time and space, spanwise and streamwise) at the top of the boundary layer, and tripling of boundary layer thickness. Also presented is a minor improvement to a previously published unheated starting length factor for flat-plate laminar boundary layers with uniform wall heat flux. 
    more » « less
  2. We compute steady planar incompressible flows and wall shapes that maximize the rate of heat transfer ($$Nu$$) between hot and cold walls, for a given rate of viscous dissipation by the flow ($$Pe^2$$), with no-slip boundary conditions at the walls. In the case of no flow, we show theoretically that the optimal walls are flat and horizontal, at the minimum separation distance. We use a decoupled approximation to show that flat walls remain optimal up to a critical non-zero flow magnitude. Beyond this value, our computed optimal flows and wall shapes converge to a set of forms that are invariant except for a$$Pe^{-1/3}$$scaling of horizontal lengths. The corresponding rate of heat transfer$$Nu \sim Pe^{2/3}$$. We show that these scalings result from flows at the interface between the diffusion-dominated and convection-dominated regimes. We also show that the separation distance of the walls remains at its minimum value at large$$Pe$$. 
    more » « less
  3. Gradient ascent methods are developed to compute incompressible flows that maximize heat transport between two isothermal no-slip parallel walls. Parameterizing the magnitude of the velocity fields by a Péclet number $Pe$ proportional to their root-mean-square rate of strain, the schemes are applied to compute two-dimensional flows optimizing convective enhancement of diffusive heat transfer, i.e. the Nusselt number $Nu$ up to $$Pe\approx 10^{5}$$ . The resulting transport exhibits a change of scaling from $$Nu-1\sim Pe^{2}$$ for $Pe<10$ in the linear regime to $$Nu\sim Pe^{0.54}$$ for $$Pe>10^{3}$$ . Optimal fields are observed to be approximately separable, i.e. products of functions of the wall-parallel and wall-normal coordinates. Analysis employing a separable ansatz yields a conditional upper bound $${\lesssim}Pe^{6/11}=Pe^{0.\overline{54}}$$ as $$Pe\rightarrow \infty$$ similar to the computationally achieved scaling. Implications for heat transfer in buoyancy-driven Rayleigh–Bénard convection are discussed. 
    more » « less
  4. null (Ed.)
    We study hydrodynamics, heat transfer, and entropy generation in pressure-driven microchannel flow of a power-law fluid. Specifically, we address the effect of asymmetry in the slip boundary condition at the channel walls. Constant, uniform but unequal heat fluxes are imposed at the walls in this thermally developed flow. The effect of asymmetric slip on the velocity profile, on the wall shear stress, on the temperature distribution, on the Bejan number profiles, and on the average entropy generation and the Nusselt number are established through the numerical evaluation of exact analytical expressions derived. Specifically, due to asymmetric slip, the fluid momentum flux and thermal energy flux are enhanced along the wall with larger slip, which, in turn, shifts the location of the velocity's maximum to an off-center location closer to the said wall. Asymmetric slip is also shown to redistribute the peaks and plateaus of the Bejan number profile across the microchannel, showing a sharp transition between entropy generation due to heat transfer and due to fluid flow at an off-center-line location. In the presence of asymmetric slip, the difference in the imposed heat fluxes leads to starkly different Bejan number profiles depending on which wall is hotter, and whether the fluid is shear-thinning or shear-thickening. Overall, slip is shown to promote uniformity in both the velocity field and the temperature field, thereby reducing irreversibility in this flow. 
    more » « less
  5. null (Ed.)
    This study explores thermal convection in suspensions of neutrally buoyant, non-colloidal suspensions confined between horizontal plates. A constitutive diffusion equation is used to model the dynamics of the particles suspended in a viscous fluid and it is coupled with the flow equations. We employ a simple model that was proposed by Metzger, Rahli & Yin ( J. Fluid Mech. , vol. 724, 2013, pp. 527–552) for the effective thermal diffusivity of suspensions. This model considers the effect of shear-induced diffusion and gives the thermal diffusivity increasing linearly with the thermal Péclet number ( Pe ) and the particle volume fraction ( ϕ ). Both linear stability analysis and numerical simulation based on the mathematical models are performed for various bulk particle volume fractions $$({\phi _b})$$ ranging from 0 to 0.3. The critical Rayleigh number $$(R{a_c})$$ grows gradually by increasing $${\phi _b}$$ from the critical value $$(R{a_c} = 1708)$$ for a pure Newtonian fluid, while the critical wavenumber $$({k_c})$$ remains constant at 3.12. The transition from the conduction state of suspensions is subcritical, whereas it is supercritical for the convection in a pure Newtonian fluid $$({\phi _b} = 0)$$ . The heat transfer in moderately dense suspensions $$({\phi _b} = 0.2\text{--}0.3)$$ is significantly enhanced by convection rolls for small Rayleigh number ( Ra ) close to $$R{a_c}$$ . We also found a power-law increase of the Nusselt number ( Nu ) with Ra , namely, $$Nu\sim R{a^b}$$ for relatively large values of Ra where the scaling exponent b decreases with $${\phi _b}$$ . Finally, it turns out that the shear-induced migration of particles can modify the heat transfer. 
    more » « less