Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For the first time, the capture of the planar antiaromatic parent benzene dianion in between two trivalent rare earth (RE) metal cations (REIII), each stabilized by two guanidinate ligands, is reported. The synthesized inverse‐sandwich complexes [{(Me3Si)2NC(NiPr)2}2RE]2(μ‐η6 : η6‐C6H6), (RE=Y (1), Dy (2), and Er (3)) were crystallized from aprotic solvents and feature a remarkably planar parent benzene dianion, previously not encountered for any metal ion prone to low or absent covalency. The −2 charge localization at the benzene ligand was deduced from the results obtained by single‐crystal X‐ray diffraction analyses, spectroscopy, magnetometry, and Density Functional Theory (DFT) calculations. In the1H NMR spectrum of the diamagnetic Y complex1, the equivalent proton resonance of the bridging benzene dianion ligand is drastically shifted to higher field in comparison to free benzene. This and the calculated highly positive Nucleus‐Independent Chemical Shift (NICS) values are attributed to the antiaromatic character of the benzene dianion ligand. The crucial role of the ancillary guanidinate ligand scaffold in stabilizing the planar benzene dianion conformation was also elucidated by DFT calculations. Remarkably, the planarity of the benzene dianion originates from the stabilization of the π‐type orbitals of the d‐manifold and compression through its strong electrostatic interaction with the two REIIIsites.more » « less
-
Abstract Anionic ancillary ligands play a critical role in the construction of rare earth (RE) metal complexes due to the large influence on the stability of the molecule and engendering emergent electronic properties that are of interest in a plethora of applications. Supporting ligands comprising oxygen donor atoms are highly pursued in RE chemistry owing to the high oxophilicity innate to these ions. The scarcely employed bis(acyl)phosphide (BAP) ligands feature oxygen coordination sites and contain a phosphide backbone rendering it attractive for RE‐coordination chemistry. Here, we integrate bis(mesitoyl)phosphide (mesBAP) as an ancillary ligand into REIIIchemistry to generate the first dinuclear trivalent RE complexes containing BAP ligands; [{mesBAP}2RE(THF)(μ‐Cl)]2(RE=Y, (1), Gd (2), and Dy (3); THF=tetrahydrofuran). Each RE center is ligated to two monoanionicmesBAP ligands, one THF molecule and one chloride ion. All three molecules were characterized through single‐crystal X‐ray diffraction,31P NMR, IR and UV‐Vis spectroscopy.31P,1H and13C NMR on the diamagnetic yttrium congener1confirm asymmetric ligand coordination. DFT calculations conducted on2provided insight into the electronic structure. The magnetic properties of2and3were investigated via SQUID magnetometry. The GdIIIions exhibit weak antiferromagnetic coupling, corroborated by DFT results.more » « less
-
Introducing spin onto organic ligands that are coordinated to rare earth metal ions allows direct exchange with metal spin centres. This is particularly relevant for the deeply buried 4f-orbitals of the lanthanide ions that can give rise to unparalleled magnetic properties. For efficacy of exchange coupling, the donor atoms of the radical ligand require high-spin density. Such molecules are extremely rare owing to their reactive nature that renders isolation and purification difficult. Here, we demonstrate that a 2,2′-azopyridyl (abpy) radical ( S = 1/2) bound to the rare earth metal yttrium can be realized. This molecule represents the first rare earth metal complex containing an abpy radical and is unambigously characterized by X-ray crystallography, NMR, UV-Vis-NIR, and IR spectroscopy. In addition, the most stable isotope 89 Y with a natural abundance of 100% and a nuclear spin of ½ allows an in-depth analysis of the yttrium–radical complex via EPR and HYSCORE spectroscopy. Further insight into the electronic ground state of the radical azobispyridine-coordinated metal complex was realized through unrestricted DFT calculations, which suggests that the unpaired spin density of the SOMO is heavily localized on the azo and pyridyl nitrogen atoms. The experimental results are supported by NBO calculations and give a comprehensive picture of the spin density of the azopyridyl ancillary ligand. This unexplored azopyridyl radical anion in heavy element chemistry bears crucial implications for the design of molecule-based magnets particularly comprising anisotropic lanthanide ions.more » « less