skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Delcamp, Jared H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 13, 2025
  2. Free, publicly-accessible full text available June 21, 2025
  3. Near infrared switch-on emission of SO3C7 in albumin allows imaging behind dark fabric which can inhibit latent blood stain detection. 
    more » « less
  4. Dicyanobenzothiadiazole based dyes have shown exceptional tunability of oxidizing strength and absorption energy. The photophysical thermodynamic and kinetic properties are studied with desirable properties shown for future use in photocatalysis. 
    more » « less
  5. Abstract Changes in the viscosity of intracellular microenvironments may indicate the onset of diseases like diabetes, blood‐based illnesses, hypertension, and Alzheimer's. To date, monitoring viscosity changes in the intracellular environment remains a challenge with prior work focusing primarily on visible light‐absorbing viscosity sensing fluorophores. Herein, a series of near‐infrared (NIR, 700–1000 nm) absorbing and emitting indolizine squaraine fluorophores (1PhSQ,2PhSQ,SO3SQ,1DMASQ,7DMASQ, and1,7DMASQ) are synthesized and studied for NIR viscosity sensitivity.2PhSQexhibits a very high slope in its Forster‐Hoffmann plot at 0.75 which indicates this dye is a potent viscosity sensor. The properties of the squaraine fluorophores are studied computationallyviadensity functional theory (DFT) and time‐dependent (TD)‐DFT. Experimentally, both steady‐state and time‐resolved emission spectroscopy, absorption spectroscopy, and electrochemical characterization are conducted on the dyes. Precise photophysical tuning is observed within the series with emission maxima wavelengths as long as 881 nm for1,7DMASQand fluorescence quantum yields as high as 39.5 and 72.0 % for1PhSQin DCM and THF, respectively. The high tunability of this molecular scaffold renders indolizine squaraine fluorophores excellent prospects as viscosity‐sensitive biological imaging agents with2PhSQgiving a dramatically higher fluorescence quantum yield (from 0.3 to 37.1 %) as viscosity increases. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  6. In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000–1,700 nm) and extended SWIR (ESWIR, 1,700–2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300–1,700 nm and emission onsets of 1,800–2,200 nm. We characterize the fluorophores photophysically (both steady-state and time- resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  7. Robust earth-abundant transition metal-based photocatalysts are needed for photocatalytic CO2 reduction. A series of six Ni(II) complexes have been synthesized with a tridentate CNC pincer ligand composed of two imidazole or benzimidazole derived N-heterocyclic carbene (NHC) rings and a pyridyl ring with different R substituents (R = OMe, Me, H) para to N of the pyridine ring. These complexes have been characterized using spectroscopic, analytic, and crystallographic methods. The electrochemical properties of all complexes were studied by cyclic voltammetry under N2 and CO2 atmospheres. Photocatalytic reduction of CO2 to CO and HCO2– was analyzed using all the complexes in the presence and absence of an external photosensitizer (PS). All of these complexes are active as photocatalysts for CO2 reduction with and without the presence of an external PS with appreciable turnover numbers (TON) for formate (HCO2–) production and typically lower amounts of CO. Notably, all Ni(II) CNC-pincer complexes in this series are also active as self-sensitized photocatalysts. Complex 4Me with a benzimidazole derived CNC pincer ligand was found to be the most active self-sensitized photocatalyst. Ultrafast transient absorption spectroscopy (TAS) experiments and computational studies were performed to understand the mechanism of these catalysts. Whereas sensitized catalysis involves halide loss to produce more active complexes, self-sensitized catalysis requires some halide to remain coordinated to allow for a favorable electron transfer between the excited nickel complex and the sacrificial electron donor. This then allows the nickel complex to undergo CO2 reduction catalysis via NiI or Ni0 catalytic cycles. The two active species (NiI¬ and Ni0) demonstrate distinct reactivity and selectivity which influences the formation of CO vs. formate as the product. 
    more » « less
  8. A readily accessible dye molecule with potential properties well-beyond the state-of-the-art for dye-sensitized solar cells is realized from extensive quantum chemical characterization of nearly 8000 stochastically-derived novel molecules. 
    more » « less