skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dempsey, Jillian L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of tungsten cyclopentadienyl carbonyl complexes were prepared and characterized to quantify their thermochemical properties and explore their reactivity. The PR3 ligand was systematically varied across a series of CpW(CO)2PR3H metal hydride complexes, where PR3 = P(OEt)3, P(Bu)3, and P(Cy)3. These complexes are known to undergo multiple proton, electron, and proton-coupled electron transfer reactions to access a variety of species including [CpW(CO)2PR3]–, [CpW(CO)2PR3(CH3CN)]+, and [CpW(CO)2PR3]2. Cyclic voltammograms of the CpW(CO)2PR3H•+/0 and [CpW(CO)2PR3]•0/– couples are chemically irreversible, indicating chemical reactivity upon oxidation; the anodic peak potential shifts to lower potentials as the donating ability of phosphine is increased, agreeing with previous literature on similar complexes. Additionally, voltammograms of [CpW(CO)2P(Cy)3]– become chemically reversible at scan rates above 500 mV/s, indicating that the dimerization of the [CpW(CO)2PR3]• product, formed by the oxidation of [CpW(CO)2PR3]–, is slower with the sterically bulky phosphine P(Cy)3, and at high scan rates the species can be reduced before dimerization occurs. Further, as the donating ability of the phosphine increases, the pKa of the CpW(CO)2PR3H complexes increases. This work shows how ligand sterics and electronics can tune the thermochemical properties that underpin proton, electron, and proton-coupled electron transfer reactivity of these complexes. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Free, publicly-accessible full text available August 1, 2025
  3. Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states. 
    more » « less
  4. A need for enhanced access to formal electrochemistry training has led to the launch of several standalone workshops, including Cyclic Voltammetry Boot Camp. In this article, we describe the history of Cyclic Voltammetry Boot Camp, its scope and mission, the structure and content covered during the three-day workshop, and the impact the workshop has had on participants. The workshop is also contextualized through a brief summary of related workshops. 
    more » « less
  5. Free, publicly-accessible full text available June 19, 2025
  6. When irradiated with blue light in the presence of a Lewis base (L), [CpW(CO) 3 ] 2 undergoes metal–metal bond cleavage followed by a disproportionation reaction to form [CpW(CO) 3 L] + and [CpW(CO) 3 ] − . Here, we show that in the presence of pyridinium tetrafluoroborate, [CpW(CO) 3 ] − reacts further to form a metal hydride complex CpW(CO) 3 H. The rection was monitored through in situ photo 1 H NMR spectroscopy experiments and the mechanism of light-driven hydride formation was investigated by determining quantum yields of formation. Quantum yields of formation of CpW(CO) 3 H correlate with I −1/2 (I = photon flux on our sample tube), indicating that the net disproportionation of [CpW(CO) 3 ] 2 to form the hydride precursor [CpW(CO) 3 ] − occurs primarily through a radical chain mechanism. 
    more » « less