skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, Ang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To cope with growing wireless bandwidth demand, millimeter wave (mmWave) communication has been identified as a promising technology to deliver Gbps throughput. However, due to the susceptibility of mmWave signals to blockage, applications can experience significant performance variability as users move around due to rapid and significant variation in channel conditions. In this context, proactive schedulers that make use of future data rate prediction have potential to bring a significant performance improvement as compared to traditional schedulers. In this work, we explore the possibility of proactive scheduling that uses mobility prediction and some knowledge of the environment to predict future channel conditions. We present both an optimal proactive scheduler, which is based on an integer linear programming formulation and provides an upper bound on proactive scheduling performance, and a greedy heuristic proactive scheduler that is suitable for practical implementation. Extensive simulation results show that proactive scheduling has the potential to increase average user data rate by up to 35% over the classic proportional fair scheduler without any loss of fairness and incurring only a small increase in jitter. The results also show that the efficient proactive heuristic scheduler achieves from 60% to 75% of the performance gains of the optimal proactive scheduler. Finally, the results show that proactive scheduling performance is sensitive to the quality of mobility prediction and, thus, use of state-of-the-art mobility prediction techniques will be necessary to realize its full potential. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. To cope with growing wireless bandwidth demand, millimeter wave (mmWave) communication has been identified as a promising technology to deliver Gbps throughput. However, due to the susceptibility of mmWave signals to blockage, applications can experience significant performance variability as users move around due to rapid and significant variation in channel conditions. In this context, proactive schedulers that make use of future data rate prediction have potential to bring a significant performance improvement as compared to traditional schedulers. In this work, we propose an efficient proactive algorithm that prioritizes the scheduling of scarce resources to achieve better performance than traditional schedulers. The results show that our scheduler can increase average data rate by up to 20% compared to non-proactive scheduling and achieves from 60% to 75% of the performance gain of an optimal proactive scheduler. 
    more » « less
  3. Although the millimeter wave (mmWave) band has great potential to address ever-increasing demands for wireless bandwidth, its intrinsically unique propagation characteristics call for different scheduling strategies in order to minimize performance drops caused by blockages. A promising approach to mitigate the blockage problem is proactive scheduling, which uses blockage predictions to schedule users when they are experiencing good channel conditions. In this paper, we formulate an optimal scheduling problem with fairness constraints that allows us to find a schedule with maximum aggregate rate that achieves approximately the same fairness as the classic proportional fair scheduler. The results show that, for the problem settings studied, up to around 30% increase in aggregate rate compared to classic proportional fair scheduling (PFS) is possible with no decrease in fairness when blockages can be accurately predicted 0.5 seconds in advance. Furthermore, aggregate rate could be doubled compared to PFS if blockages can be accurately predicted 5 seconds in advance. While these results demonstrate the very promising potential of proactive scheduling, we also discuss several future research directions that must be pursued to effectively realize the approach. 
    more » « less
  4. To accommodate increasingly intensive application bandwidth demands, mmWave WLAN at 60 GHz has been identified as a promising technology with the potential to achieve Gbps throughput. However, mmWave performance is highly dependent on the signal's line-of-sight (LoS) condition due to its high penetration loss when obstructed. We study the use of dedicated flat passive reflectors to improve coverage in indoor mmWave WLANs through a reflector placement scheme that accommodates any general indoor scenario with pre-deployed ceiling-mounted access points (APs). The reflector locations are efficiently selected among all available vertical surfaces within the indoor environment. Through simulations, we show that deployment of intelligently placed reflectors can improve LoS coverage by up to 10%, which is more than deploying one additional AP. Results are provided to illustrate how different factors affect coverage and insights about preferred reflector placements are provided. 
    more » « less