Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract Evidence has emerged for a stochastic signal correlated among 67 pulsars within the 15 yr pulsar-timing data set compiled by the NANOGrav collaboration. Similar signals have been found in data from the European, Indian, Parkes, and Chinese pulsar timing arrays. This signal has been interpreted as indicative of the presence of a nanohertz stochastic gravitational-wave background (GWB). To explore the internal consistency of this result, we investigate how the recovered signal strength changes as we remove the pulsars one by one from the data set. We calculate the signal strength using the (noise-marginalized) optimal statistic, a frequentist metric designed to measure the correlated excess power in the residuals of the arrival times of the radio pulses. We identify several features emerging from this analysis that were initially unexpected. The significance of these features, however, can only be assessed by comparing the real data to synthetic data sets. After conducting identical analyses on simulated data sets, we do not find anything inconsistent with the presence of a stochastic GWB in the NANOGrav 15 yr data. The methodologies developed here can offer additional tools for application to future, more sensitive data sets. While this analysis provides an internal consistency check of the NANOGrav results, it does not eliminate the necessity for additional investigations that could identify potential systematics or uncover unmodeled physical phenomena in the data.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can manifest in pulsar timing arrays (PTAs) through excursions from, and breaks in, the expected power law of the GWB strain spectrum. To do this, we create a semianalytic SMBHB population model, fit to North American Nanohertz Observatory for Gravitational Waves (NANOGrav’s) 15 yr GWB amplitude, and with 1000 realizations, we study the populations’ characteristic strain and residual spectra. Comparing our models to the NANOGrav 15 yr spectrum, we find two interesting excursions from the power law. The first, at 2 nHz, is below our GWB realizations with ap-value significancep= 0.05–0.06 (≈1.8σ–1.9σ). The second, at 16 nHz, is above our GWB realizations withp= 0.04–0.15 (≈1.4σ–2.1σ). We explore the properties of a loud SMBHB that could cause such an excursion. Our simulations also show that the expected number of SMBHBs decreases by 3 orders of magnitude, from ∼106to ∼103, between 2 and 20 nHz. This causes a break in the strain spectrum as the stochasticity of the background breaks down at , consistent with predictions pre-dating GWB measurements. The diminished GWB signal from SMBHBs at frequencies above the 26 nHz break opens a window for PTAs to detect continuous GWs from individual SMBHBs or GWs from the early Universe.more » « less
-
Abstract The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitudeAand a spectral indexγ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for arunning(i.e., logarithmic frequency dependence) of the spectral index, . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameterβconsistent with no running, , and an inconclusive Bayes factor, . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzeroβ. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA.more » « less