skip to main content

Search for: All records

Creators/Authors contains: "Deng, Zhun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2024
  2. Free, publicly-accessible full text available April 1, 2024
  3. Free, publicly-accessible full text available April 1, 2024
  4. Abstract Representations of the world environment play a crucial role in artificial intelligence. It is often inefficient to conduct reasoning and inference directly in the space of raw sensory representations, such as pixel values of images. Representation learning allows us to automatically discover suitable representations from raw sensory data. For example, given raw sensory data, a deep neural network learns nonlinear representations at its hidden layers, which are subsequently used for classification (or regression) at its output layer. This happens implicitly during training through minimizing a supervised or unsupervised loss. In this letter, we study the dynamics of such implicit nonlinear representation learning. We identify a pair of a new assumption and a novel condition, called the on-model structure assumption and the data architecture alignment condition. Under the on-model structure assumption, the data architecture alignment condition is shown to be sufficient for the global convergence and necessary for global optimality. Moreover, our theory explains how and when increasing network size does and does not improve the training behaviors in the practical regime. Our results provide practical guidance for designing a model structure; for example, the on-model structure assumption can be used as a justification for using a particular model structure instead of others. As an application, we then derive a new training framework, which satisfies the data architecture alignment condition without assuming it by automatically modifying any given training algorithm dependent on data and architecture. Given a standard training algorithm, the framework running its modified version is empirically shown to maintain competitive (practical) test performances while providing global convergence guarantees for deep residual neural networks with convolutions, skip connections, and batch normalization with standard benchmark data sets, including MNIST, CIFAR-10, CIFAR-100, Semeion, KMNIST, and SVHN. 
    more » « less
  5. Data augmentation by incorporating cheap unlabeled data from multiple domains is a powerful way to improve prediction especially when there is limited labeled data. In this work, we investigate how adversarial robustness can be enhanced by leveraging out-of-domain unlabeled data. We demonstrate that for broad classes of distributions and classifiers, there exists a sample complexity gap between standard and robust classification. We quantify the extent to which this gap can be bridged by leveraging unlabeled samples from a shifted domain by providing both upper and lower bounds. Moreover, we show settings where we achieve better adversarial robustness when the unlabeled data come from a shifted domain rather than the same domain as the labeled data. We also investigate how to leverage out-of-domain data when some structural information, such as sparsity, is shared between labeled and unlabeled domains. Experimentally, we augment object recognition datasets (CIFAR-10, CINIC-10, and SVHN) with easy-to-obtain and unlabeled out-of-domain data and demonstrate substantial improvement in the model’s robustness against l_infty adversarial attacks on the original domain. 
    more » « less
  6. We investigate the power of censoring techniques, first developed for learning {\em fair representations}, to address domain generalization. We examine {\em adversarial} censoring techniques for learning invariant representations from multiple "studies" (or domains), where each study is drawn according to a distribution on domains. The mapping is used at test time to classify instances from a new domain. In many contexts, such as medical forecasting, domain generalization from studies in populous areas (where data are plentiful), to geographically remote populations (for which no training data exist) provides fairness of a different flavor, not anticipated in previous work on algorithmic fairness. We study an adversarial loss function for k domains and precisely characterize its limiting behavior as k grows, formalizing and proving the intuition, backed by experiments, that observing data from a larger number of domains helps. The limiting results are accompanied by non-asymptotic learning-theoretic bounds. Furthermore, we obtain sufficient conditions for good worst-case prediction performance of our algorithm on previously unseen domains. Finally, we decompose our mappings into two components and provide a complete characterization of invariance in terms of this decomposition. To our knowledge, our results provide the first formal guarantees of these kinds for adversarial invariant domain generalization. 
    more » « less