skip to main content

Search for: All records

Creators/Authors contains: "Derry Tanti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Media framing refers to highlighting certain aspect of an issue in the news to promote a particular interpretation to the audience. Supervised learning has often been used to recognize frames in news articles, requiring a known pool of frames for a particular issue, which must be identified by communication researchers through thorough manual content analysis. In this work, we devise an unsupervised learning approach to discover the frames in news articles automatically. Given a set of news articles for a given issue, e.g., gun violence, our method first extracts frame elements from these articles using related Wikipedia articles and the Wikipedia category system. It then uses a community detection approach to identify frames from these frame elements. We discuss the effectiveness of our approach by comparing the frames it generates in an unsupervised manner to the domain-expert-derived frames for the issue of gun violence, for which a supervised learning model for frame recognition exists.
    Free, publicly-accessible full text available June 1, 2023
  2. Neural Machine Translation (NMT) models have been observed to produce poor translations when there are few/no parallel sentences to train the models. In the absence of parallel data, several approaches have turned to the use of images to learn translations. Since images of words, e.g., horse may be unchanged across languages, translations can be identified via images associated with words in different languages that have a high degree of visual similarity. However, translating via images has been shown to improve upon text-only models only marginally. To better understand when images are useful for translation, we study image translatability of words, which we define as the translatability of words via images, by measuring intra- and inter-cluster similarities of image representations of words that are translations of each other. We find that images of words are not always invariant across languages, and that language pairs with shared culture, meaning having either a common language family, ethnicity or religion, have improved image translatability (i.e., have more similar images for similar words) compared to its converse, regardless of their geographic proximity. In addition, in line with previous works that show images help more in translating concrete words, we found that concrete words have improvedmore »image translatability compared to abstract ones.« less
  3. Indonesian language is heavily riddled with colloquialism whether in written or spoken forms. In this paper, we identify a class of Indonesian colloquial words that have undergone morphological transformations from their standard forms, categorize their word formations, and propose a benchmark dataset of Indonesian Colloquial Lexicons (IndoCollex) consisting of informal words on Twitter expertly annotated with their standard forms and their word formation types/tags. We evalu- ate several models for character-level transduction to perform morphological word normalization on this testbed to understand their failure cases and provide baselines for future work. As IndoCollex catalogues word formation phenomena that are also present in the non-standard text of other languages, it can also provide an attractive testbed for methods tailored for cross-lingual word normalization and non-standard word formation.
  4. News media structure their reporting of events or issues using certain perspectives. When describing an incident involving gun violence, for example, some journalists may focus on mental health or gun regulation, while others may emphasize the discussion of gun rights. Such perspectives are called “frames” in communication research. We study, for the first time, the value of combining lead images and their contextual information with text to identify the frame of a given news article. We observe that using multiple modes of information(article- and image-derived features) improves prediction of news frames over any single mode of information when the images are relevant to the frames of the headlines. We also observe that frame image relevance is related to the ease of conveying frames via images, which we call frame concreteness. Additionally, we release the first multimodal news framing dataset related to gun violence in the U.S., curated and annotated by communication researchers. The dataset will allow researchers to further examine the use of multiple information modalities for studying media framing.
  5. When journalists cover a news story, they can cover the story from multiple angles or perspectives. These perspectives are called “frames,” and usage of one frame or another may influence public perception and opinion of the issue at hand. We develop a web-based system for analyzing frames in multilingual text documents. We propose and guide users through a five-step end-to-end computational framing analysis framework grounded in media framing theory in communication research. Users can use the framework to analyze multilingual text data, starting from the exploration of frames in user’s corpora and through review of previous framing literature (step 1-3) to frame classification (step 4) and prediction (step 5). The framework combines unsupervised and supervised machine learning and leverages a state-of-the-art (SoTA) multilingual language model, which can significantly enhance frame prediction performance while requiring a considerably small sample of manual annotations. Through the interactive website, anyone can perform the proposed computational framing analysis, making advanced computational analysis available to researchers without a programming background and bridging the digital divide within the communication research discipline in particular and the academic community in general. The system is available online at http://www.openframing.org, via an API http://www.openframing.org:5000/docs/, or through our GitHub page https://github.com/vibss2397/openFraming.
  6. Different news articles about the same topic often offer a variety of perspectives: an article written about gun violence might emphasize gun control, while another might promote 2nd Amendment rights, and yet a third might focus on mental health issues. In communication research, these different perspectives are known as “frames”, which, when used in news media will influence the opinion of their readers in multiple ways. In this paper, we present a method for effectively detecting frames in news headlines. Our training and performance evaluation is based on a new dataset of news headlines related to the issue of gun violence in the United States. This Gun Violence Frame Corpus (GVFC) was curated and annotated by journalism and communication experts. Our proposed approach sets a new state-of-the-art performance for multiclass news frame detection, significantly outperforming a recent baseline by 35.9% absolute difference in accuracy. We apply our frame detection approach in a large scale study of 88k news headlines about the coverage of gun violence in the U.S. between 2016 and 2018.