- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
02000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Desai, Pradnya (2)
-
Eskander, Peter (1)
-
Jough, Peter (1)
-
Lai, Phung (1)
-
Phan, NhatHai (1)
-
Shimobayashi, Masaho (1)
-
Siri, John Scott (1)
-
Thai, My T. (1)
-
Wohn, Donghee Yvette (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we focus on preserving differential privacy (DP) in continual learning (CL), in which we train ML models to learn a sequence of new tasks while memorizing previous tasks. We first introduce a notion of continual adjacent databases to bound the sensitivity of any data record participating in the training process of CL. Based upon that, we develop a new DP-preserving algorithm for CL with a data sampling strategy to quantify the privacy risk of training data in the well-known Averaged Gradient Episodic Memory (A-GEM) approach by applying a moments accountant. Our algorithm provides formal guarantees of privacy for data records across tasks in CL. Preliminary theoretical analysis and evaluations show that our mechanism tightens the privacy loss while maintaining a promising model utility.more » « less
-
Wohn, Donghee Yvette ; Jough, Peter ; Eskander, Peter ; Siri, John Scott ; Shimobayashi, Masaho ; Desai, Pradnya ( , Proceedings of the Annual Symposium on Computer-Human Interaction in Play)Digital patronage is the act of delivering recurring direct support to content creators online. In this paper, we define digital patronage and examine why patrons engage in this behavior on the live streaming platform Twitch. Our mixed method research illustrates patrons' motivations, how patronage motivations differ from that of donations, and the motivational factors that are associated with higher levels of patronage. We discuss how results extend understanding of patronage in the context of social support theory and provide design implications for digital patronage platforms.more » « less