skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deshmukh, Kshiteej"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resonances are fundamentally important in the field of nano-photonics and optics. Thus, it is of great interest to know what are the limits to which they can be tuned. The bandwidth of the resonances in materials is an important feature, which is commonly characterized by using the Q-factor. We present tight bounds correlating the peak absorption with the Q-factor of two-phase quasi-static metamaterials and plasmonic resonators evaluated at a given peak frequency by introducing an alternative definition for the Q-factor in terms of the complex effective permittivity of the composite material. This composite may consist of well-separated clusters of plasmonic particles, and, thus, we obtain bounds on the response of a single cluster as governed by the polarizability. Optimal metamaterial microstructure designs achieving points on the bounds are presented. The most interesting optimal microstructure is a limiting case of doubly coated ellipsoids that attains points on the lower bound. We also obtain bounds on Q for three dimensional, isotropic, and fixed volume fraction two-phase quasi-static metamaterials and particle clusters with an isotropic polarizability. Some almost optimal isotropic microstructure geometries are identified. 
    more » « less
  2. Changing the microstructure properties of a space–time metamaterial while a wave is propagating through it, in general, requires addition or removal of energy, which can be of an exponential form depending on the type of modulation. This limits the realization and application of space–time metamaterials. We resolve this issue by introducing a mechanism of conserving energy at temporal metasurfaces in a non-linear setting. The idea is first demonstrated by considering a wave-packet propagating in a discrete medium of a one-dimensional (1D) chain of springs and masses, where using our energy conserving mechanism, we show that the spring stiffness can be incremented at several time interfaces and the energy will still be conserved. We then consider an interesting application of time-reversed imaging in 1D and two-dimensional (2D) spring–mass systems with a wave packet traveling in the homogenized regime. Our numerical simulations show that, in 1D, when the wave packet hits the time-interface, two sets of waves are generated, one traveling forward in time and the other traveling backward. The time-reversed waves re-converge at the location of the source, and we observe its regeneration. In 2D, we use more complicated initial shapes and, even then, we observe regeneration of the original image or source. Thus, we achieve time-reversed imaging with conservation of energy in a non-linear system. The energy conserving mechanism can be easily extended to continuum media. Some possible ideas and concerns in experimental realization of space–time media are highlighted in conclusion and in the supplementary material. 
    more » « less