Wavelength-selective thermal emitters (WS-EMs) hold considerable appeal due to the scarcity of cost-effective, narrow-band sources in the mid-to-long-wave infrared spectrum. WS-EMs achieved via dielectric materials typically exhibit thermal emission peaks with high quality factors (Qfactors), but their optical responses are prone to temperature fluctuations. Metallic EMs, on the other hand, show negligible drifts with temperature changes, but theirQfactors usually hover around 10. In this study, we introduce and experimentally verify an EM grounded in plasmonic quasi-bound states in the continuum (BICs) within a mirror-coupled system. Our design numerically delivers an ultra-narrowband single peak with aQfactor of approximately 64 and near-unity absorptance that can be freely tuned within an expansive band of more than 10 µm. By introducing air slots symmetrically, theQfactor can be further augmented to around 100. Multipolar analysis and phase diagrams are presented to elucidate the operational principle. Importantly, our infrared spectral measurements affirm the remarkable resilience of our designs’ resonance frequency in the face of temperature fluctuations over 300°C. Additionally, we develop an effective impedance model based on the optical nanoantenna theory to understand how further tuning of the emission properties is achieved through precise engineering of the slot. This research thus heralds the potential of applying plasmonic quasi-BICs in designing ultra-narrowband, temperature-stable thermal emitters in the mid-infrared. Moreover, such a concept may be adaptable to other frequency ranges, such as near-infrared, terahertz, and gigahertz.
more »
« less
Tight bounds correlating peak absorption with Q-factor in composites and metallic clusters of particles
Resonances are fundamentally important in the field of nano-photonics and optics. Thus, it is of great interest to know what are the limits to which they can be tuned. The bandwidth of the resonances in materials is an important feature, which is commonly characterized by using the Q-factor. We present tight bounds correlating the peak absorption with the Q-factor of two-phase quasi-static metamaterials and plasmonic resonators evaluated at a given peak frequency by introducing an alternative definition for the Q-factor in terms of the complex effective permittivity of the composite material. This composite may consist of well-separated clusters of plasmonic particles, and, thus, we obtain bounds on the response of a single cluster as governed by the polarizability. Optimal metamaterial microstructure designs achieving points on the bounds are presented. The most interesting optimal microstructure is a limiting case of doubly coated ellipsoids that attains points on the lower bound. We also obtain bounds on Q for three dimensional, isotropic, and fixed volume fraction two-phase quasi-static metamaterials and particle clusters with an isotropic polarizability. Some almost optimal isotropic microstructure geometries are identified.
more »
« less
- PAR ID:
- 10495652
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 123
- Issue:
- 8
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the rigidity transition associated with shear jamming in frictionless, as well as frictional, disk packings in the quasi-static regime and at low shear rates. For frictionless disks, the transition under quasi-static shear is discontinuous, with an instantaneous emergence of a system spanning rigid clusters at the jamming transition. For frictional systems, the transition appears continuous for finite shear rates, but becomes sharper for lower shear rates. In the quasi-static limit, it is discontinuous as in the frictionless case. Thus, our results show that the rigidity transition associated with shear jamming is discontinuous, as demonstrated in the past for isotropic jamming of frictionless particles, and therefore a unifying feature of the jamming transition in general.more » « less
-
Abstract Precise control over light polarization is critical for advancing technologies in telecommunications, quantum computing, and image sensing. However, existing methods for manipulating polarization around exceptional points (EPs) in non‐Hermitian systems have exclusively focused on circular polarization and work with reflected light. To address this limitation, a novel metasurface platform with high‐Q resonators is developed that enables tunable control of polarization exceptional points across arbitrary ellipticity for transmitted light. This design employs orthogonally polarized guided mode resonators in a two‐layer silicon metasurface, where careful tuning of the dipolar guided mode resonances (DGMRs) and layer spacing allows us to control the ellipticity of EPs. By leveraging high‐quality factor resonances, strong orthogonal mode coupling over distances up to a quarter wavelength is achieved. This platform exhibits omnipolarizer behavior and the corresponding phase singularity can imprint phase shifts from 0 to 2π with small perturbations in the geometry. This approach opens new possibilities for polarization control and programmable wavefront shaping, offering significant potential for next‐generation optical devices.more » « less
-
Abstract Incorporating photonic crystals with nanoplasmonic building blocks gives rise to novel optoelectronic properties that promise designing advanced multifunctional materials and electronics. Herein, the free‐standing chiral plasmonic composite films are designed by coassembling anisotropic plasmonic gold nanorods (GNRs) and rod‐like cellulose nanocrystals (CNCs). The effects of surface charge and concentration of the GNRs on the structure and optical properties of the CNC/GNR films are examined within this study. The CNC/GNR hybrid films retain the photonic characteristic of the CNCs host while concomitantly possessing the plasmonic resonance of GNRs. The negatively charged GNRs distribute uniformly in the layered CNCs host, inducing strong electrostatic repulsion among the CNCs and thus promoting the formation of a larger helical pitch than the case without GNRs. The positively charged GNRs decrease the chiroptical activity in the composite films with increasing the concentration of GNR, which is confirmed by the circular dichroism spectra. Notably, the surface plasmon resonances of GNRs enhance the fluorescence emission, which has been demonstrated by surface‐enhanced fluorescence signals in this work. This study sheds light on fabricating functional chiral plasmonic composite films with enhanced chiral plasmonics by utilizing CNCs as a dynamic chiral nematic template and adjusting surface charges.more » « less
-
This paper presents a method to lower-bound the distance of closest approach between points on an unsafe set and points along system trajectories. Such a minimal distance is a quantifiable and interpretable certificate of safety of trajectories, as compared to prior art in barrier and density methods which offers a binary indication of safety/unsafety. The distance estimation problem is converted into a infinitedimensional linear program in occupation measures based on existing work in peak estimation and optimal transport. The moment-SOS hierarchy is used to obtain a sequence of lower bounds obtained through solving semidefinite programs in increasing size, and these lower bounds will converge to the true minimal distance as the degree approaches infinity under mild conditions (e.g. Lipschitz dynamics, compact sets).more » « less
An official website of the United States government

