Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 21, 2025
-
In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (
k ||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok || = 0 from higherk ||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature. -
Abstract Realizing nonlinear optical response in the low photon density limit in solid-state systems has been a long-standing challenge. Semiconductor microcavities in the strong coupling regime hosting exciton-polaritons have emerged as attractive candidates in this context. However, the weak interaction between these quasiparticles has been a hurdle in this quest. Dipolar excitons provide an attractive strategy to overcome this limitation but are often hindered by their weak oscillator strength. The interlayer dipolar excitons in naturally occurring homobilayer MoS 2 alleviates this issue owing to their formation via hybridization of interlayer charge transfer exciton with intralayer B exciton. Here we demonstrate the formation of dipolar exciton polaritons in bilayer MoS 2 resulting in unprecedented nonlinear interaction strengths. A ten-fold increase in nonlinearity is observed for the interlayer dipolar excitons compared to the conventional A excitons. These highly nonlinear dipolar polaritons will likely be a frontrunner in the quest for solid-state quantum nonlinear devices.more » « less
-
Abstract Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton–polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton–polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry–Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm−2), an effective temperature is observed,
T eff ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton–polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavityQ ‐factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell–Boltzmann statistics atk ‖ = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.