skip to main content

Search for: All records

Creators/Authors contains: "Deshpande, Amol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We address the problem of compactly storing a large number of versions (snapshots) of a collection of keyed documents or records in a distributed environment, while efficiently answering a variety of retrieval queries over those, including retrieving full or partial versions, and evolution histories for specific keys. We motivate the increasing need for such a system in a variety of application domains, carefully explore the design space for building such a system and the various storage-computation-retrieval trade-offs, and discuss how different storage layouts influence those trade-offs. We propose a novel system architecture that satisfies the key desiderata for such a system, and offers simple tuning knobs that allow adapting to a specific data and query workload. Our system is intended to act as a layer on top of a distributed key-value store that houses the raw data as well as any indexes. We design novel off-line storage layout algorithms for efficiently partitioning the data to minimize the storage costs while keeping the retrieval costs low. We also present an online algorithm to handle new versions being added to system. Using extensive experiments on large datasets, we demonstrate that our system operates at the scale required in most practical scenarios andmore »often outperforms standard baselines, including a delta-based storage engine, by orders-of-magnitude.« less
  2. The increasing reliance on robust data-driven decision-making across many domains has made it necessary for data management systems to manage many thousands to millions of versions of datasets, acquired or constructed at various stages of analysis pipelines over time. Delta encoding is an effective and widely-used solution to compactly store a large number of datasets, that simultaneously exploits redundancies across them and keeps the average retrieval cost of reconstructing any dataset low. However, supporting any kind of rich retrieval or querying functionality, beyond single dataset checkout, is challenging in such storage engines. In this paper, we initiate a systematic study of this problem, and present DEX, a novel stand-alone delta-oriented execution engine, whose goal is to take advantage of the already computed deltas between the datasets for efficient query processing. In this work, we study how to execute checkout, intersection, union and t-threshold queries over record-based files; we show that processing of even these basic queries leads to many new and unexplored challenges and trade-offs. Starting from a query plan that confines query execution to a small set of deltas, we introduce new transformation rules based on the algebraic properties of the deltas, that allow us to explore the searchmore »space of alternative plans. For the case of checkout, we present a dynamic programming algorithm to efficiently select the optimal query plan under our cost model, while we design efficient heuristics to select effective plans that vastly outperform the base checkout-then-query approach for other queries. A key characteristic of our query execution methods is that the computational cost is primarily dependent on the size and the number of deltas in the expression (typically small), and not the input dataset versions (which can be very large). We have implemented DEX prototype on top of git, a widely used version control system. We present an extensive experimental evaluation on synthetic data with diverse characteristics, that shows that our methods perform exceedingly well compared to the baseline.« less
  3. As data-driven methods are becoming pervasive in a wide variety of disciplines, there is an urgent need to develop scalable and sustainable tools to simplify the process of data science, to make it easier to keep track of the analyses being performed and datasets being generated, and to enable introspection of the workflows. In this paper, we describe our vision of a unified provenance and metadata management system to support lifecycle management of complex collaborative data science workflows. We argue that a large amount of information about the analysis processes and data artifacts can, and should be, captured in a semi-passive manner; and we show that querying and analyzing this information can not only simplify bookkeeping and debugging tasks for data analysts but can also enable a rich new set of capabilities like identifying flaws in the data science process itself. It can also significantly reduce the time spent in fixing post-deployment problems through automated analysis and monitoring. We have implemented an initial prototype of our system, called ProvDB, on top of git (a version control system) and Neo4j (a graph database), and we describe its key features and capabilities.
  4. Deep learning has improved the state-of-the-art results in many domains, leading to the development of several systems for facilitating deep learning. Current systems, however, mainly focus on model building and training phases, while the issues of lifecycle management are largely ignored. Deep learning modeling lifecycle contains a rich set of artifacts and frequently conducted tasks, dealing with them is cumbersome and left to the users. To address these issues in a comprehensive manner, we demonstrate ModelHub, which includes a novel model versioning system (dlv), a domain-specific language for searching through model space (DQL), and a hosted service (ModelHub).
  5. Deep learning has improved state-of-the-art results in many important fields, and has been the subject of much research in recent years, leading to the development of several systems for facilitating deep learning. Current systems, however, mainly focus on model building and training phases, while the issues of data management, model sharing, and lifecycle management are largely ignored. Deep learning modeling lifecycle generates a rich set of data artifacts, e.g., learned parameters and training logs, and it comprises of several frequently conducted tasks, e.g., to understand the model behaviors and to try out new models. Dealing with such artifacts and tasks is cumbersome and largely left to the users. This paper describes our vision and implementation of a data and lifecycle management system for deep learning. First, we generalize model exploration and model enumeration queries from commonly conducted tasks by deep learning modelers, and propose a high-level domain specific language (DSL), inspired by SQL, to raise the abstraction level and thereby accelerate the modeling process. To manage the variety of data artifacts, especially the large amount of checkpointed float parameters, we design a novel model versioning system (dlv), and a read-optimized parameter archival storage system (PAS) that minimizes storage footprint andmore »accelerates query workloads with minimal loss of accuracy. PAS archives versioned models using deltas in a multi-resolution fashion by separately storing the less significant bits, and features a novel progressive query (inference) evaluation algorithm. Third, we develop efficient algorithms for archiving versioned models using deltas under co-retrieval constraints. We conduct extensive experiments over several real datasets from computer vision domain to show the efficiency of the proposed techniques.« less