skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deshpande, Sanket"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate trapping of individual rubidium (Rb) and cesium (Cs) atoms in an interleaved array of bright tweezers and dark bottle-beam traps, using a microfabricated optical element illuminated by a single-laser beam and a 4fsystem with spatial filtering. Our approach exploits the opposite-sign dynamic polarizabilities of Rb and Cs, ensuring that each species is exclusively trapped in either bright or dark sites. The passive optical mask creates optimal trap depths for both species using three transmittance levels while minimizing the optical phase difference, implemented using a variable-thickness absorbing layer of amorphous germanium. This trapping architecture achieves atom loading rates close to 50% while reducing system complexity compared to conventional methods using active optoelectronic components and/or multiple-laser wavelengths. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. We present a modeling method that incorporates full-wave electromagnetic simulations and radiation force calculations to evaluate the performance of grating chips for compact megneto-optical traps (MOTs). 
    more » « less