- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Delimitrou, Christina (3)
-
Dev, Sundar (3)
-
Lo, David (3)
-
Gan, Yu (2)
-
Gohil, Varun (1)
-
Liang, Mingyu (1)
-
Ranganathan, Parthasarathy (1)
-
Upasani, Gaurang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gan, Yu; Liang, Mingyu; Dev, Sundar; Lo, David; Delimitrou, Christina (, 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS))null (Ed.)
-
Gan, Yu; Dev, Sundar; Lo, David; Delimitrou, Christina (, ML for Computer Architecture and Systems)Cloud applications are increasingly shifting from large monolithic services, to complex graphs of loosely-coupled microservices. Despite their advantages, microservices also introduce cascading QoS violations in cloud applications, which are difficult to diagnose and correct. We present Sage, a ML-driven root cause analysis system for interactive cloud microservices. Sage leverages unsupervised learning models to circumvent the overhead of trace labeling, determines the root cause of unpredictable performance online, and applies corrective actions to restore performance. On experiments on both dedicated local clusters and large GCE clusters we show that Sage achieves high root cause detection accuracy and predictable performance.more » « less
An official website of the United States government

Full Text Available