skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dhillon, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the problem of inverting a deep generative model with ReLU activations. Inversion corresponds to finding a latent code vector that explains observed measurements as much as possible. In most prior works this is performed by attempting to solve a non-convex optimization problem involving the generator. In this paper we obtain several novel theoretical results for the inversion problem. We show that for the realizable case, single layer inversion can be performed exactly in polynomial time, by solving a linear program. Further, we show that for multiple layers, inversion is NP-hard and the pre-image set can be non-convex. For generative models of arbitrary depth, we show that exact recovery is possible in polynomial time with high probability, if the layers are expanding and the weights are randomly selected. Very recent work analyzed the same problem for gradient descent inversion. Their analysis requires significantly higher expansion (logarithmic in the latent dimension) while our proposed algorithm can provably reconstruct even with constant factor expansion. We also provide provable error bounds for different norms for reconstructing noisy observations. Our empirical validation demonstrates that we obtain better reconstructions when the latent dimension is large. 
    more » « less
  2. null (Ed.)