Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
When we illuminate gold nanofluids over indium-tin-oxide (ITO)-coated substrates, nanoparticle chains selfassemble via optical binding forces. We speculate that charge transfer between gold and ITO pins nanoparticles to the substrate and reduces the lateral Brownian motion as they attach to the substrate. We correspondingly model the self assembly with additional stochastic or random forces. Simulations show a nonequilibrium phase transition: when the stochastic force is small, nanoparticle chains align perpendicular to the light polarization and nanoparticles settle at shallow but stable nodes; when the stochastic force is large, however, the nanoparticle chains align parallel to the light polarization and nanoparticles settle at saddlepoints where the optical binding force is largely zero. Since the presence and strength of Brownian forces influence which state is formed, we reconsider the role that surfaces have—not only in relation to charge transfer but also heat transfer.more » « less
-
Levitated optomechanics in vacuum has shown promise for fundamental tests of physics including quantum mechanics and gravity, for sensing weak forces or accelerations, and for precision measurements. While much research has focused on optical trapping of dielectric particles, other approaches, such as magnetic trapping of diamagnetic particles, have been gaining interest. Here we review geometries for both optical and magnetic trapping in vacuum, with an emphasis on the properties of traps for particles with a diameter of at least one micrometer.more » « less
-
Abstract Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.more » « less