Optical levitation of dielectric particles in vacuum is a powerful technique for precision measurements, testing fundamental physics, and quantum information science. Conventional optical tweezers require bulky optical components for trapping and detection. Here, we design and fabricate an ultrathin dielectric metalens with a high numerical aperture of 0.88 at 1064 nm in vacuum. It consists of 500-nm-thick silicon nano-antennas, which are compatible with an ultrahigh vacuum. We demonstrate optical levitation of nanoparticles in vacuum with a single metalens. The trapping frequency can be tuned by changing the laser power and polarization. We also transfer a levitated nanoparticle between two separated optical tweezers. Optical levitation with an ultrathin metalens in vacuum provides opportunities for a wide range of applications including on-chip sensing. Such metalenses will also be useful for trapping ultracold atoms and molecules.
more »
« less
Comparison of magneto-gravitational and optical trapping for levitated optomechanics
Levitated optomechanics in vacuum has shown promise for fundamental tests of physics including quantum mechanics and gravity, for sensing weak forces or accelerations, and for precision measurements. While much research has focused on optical trapping of dielectric particles, other approaches, such as magnetic trapping of diamagnetic particles, have been gaining interest. Here we review geometries for both optical and magnetic trapping in vacuum, with an emphasis on the properties of traps for particles with a diameter of at least one micrometer.
more »
« less
- PAR ID:
- 10147127
- Date Published:
- Journal Name:
- Optical Trapping and Optical Micromanipulation XVI
- Page Range / eLocation ID:
- 48
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe the design, construction, and operation of an apparatus that utilizes a piezoelectric transducer for in-vacuum loading of nanoparticles into an optical trap for use in levitated optomechanics experiments. In contrast to commonly used nebulizer-based trap-loading methods that generate aerosolized liquid droplets containing nanoparticles, the method produces dry aerosols of both spherical and high-aspect ratio particles ranging in size by approximately two orders of magnitude. The device has been shown to generate accelerations of order 107 g, which is sufficient to overcome stiction forces between glass nanoparticles and a glass substrate for particles as small as 170 nm in diameter. Particles with sizes ranging from 170 nm to ∼10μm have been successfully loaded into optical traps at pressures ranging from 1 bar to 0.6 mbar. We report the velocity distribution of the particles launched from the substrate, and our results indicate promise for direct loading into ultra-high-vacuum with sufficient laser feedback cooling. This loading technique could be useful for the development of compact fieldable sensors based on optically levitated nanoparticles as well as matter–wave interference experiments with ultra-cold nano-objects, which rely on multiple repeated free-fall measurements and thus require rapid trap re-loading in high vacuum conditions.more » « less
-
Neutral Holmium′s 128 ground hyperfine states, the most of any non-radioactive element, is a testbed for quantum control of a very high dimensional Hilbert space, and offers a promising platform for quantum computing. Its high magnetic moment also makes magnetic trapping a potentially viable alternative to optical trapping. Previously we have cooled Holmium atoms in a MOT on a 410.5 nm transition, characterized its Rydberg spectra, and made measurements of the dynamic scalar and tensor polarizabilities. We report here on progress towards narrow line cooling and magnetic trapping of single atoms.more » « less
-
We report the experimental realization of optical trapping and controlled manipulations of single particles of arbitrary properties, e.g., nano- to micrometer in size, transparent spheres to strongly light absorbing nonspherical particles, in low-pressure rf plasmas. First, we show optical trapping and transport of single particles in an unmagnetized rf plasma. Then, we show similar observations in a weakly magnetized rf plasma. This is the first demonstration of actively transporting (pushing and pulling) light-absorbing, nonspherical single particles in plasmas. The result suggests that optically trapped, actively controlled, single plasma dust particles (not limited to those externally sampled spheres) could be an in situ micro-probe for dusty plasma and magnetized dusty plasma diagnostics.more » « less
-
Integrated diffraction gratings offer a compact route to magneto-optical traps (MOTs) for atom cooling and trapping, thus preparing MOTs for future scalable quantum systems. While segmented tri-gratings ensure axial radiation pressure balance, they are limited in optical trapping volume. Planar 2D gratings, though offer larger trapping regions, suffer from low diffraction efficiency and the resulting axial pressure imbalance, necessitating the use of a neutral density (ND) filter to achieve this balance. We present a numerically optimized 2D diffraction grating design that overcomes these limitations and satisfies the required optical conditions for laser cooling, namely, radiation pressure balance, specular reflection cancellation, and circular polarization handedness reversal upon diffraction, thus achieving an optical molasses – a necessary condition in MOT. Using Rigorous Coupled Wave Analysis (RCWA) and a Genetic Algorithm (GA), we design a grating for (_ ^87)Rb grating MOT (GMOT) that achieves a 24% first-order diffraction efficiency, of which 99.7% have the correct circular handedness. These properties enable efficient atom cooling without an ND filter when used with a flat-top beam inside the vacuum chamber. Our design simplifies optical alignment, reduces system footprint, and advances the integration of GMOTs into compact quantum devices.more » « less
An official website of the United States government

