- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Di_Matteo, Tiziana (2)
-
Allen, Steven W (1)
-
Bird, Simeon (1)
-
Chen, Nianyi (1)
-
Croft, Rupert_A_C (1)
-
Dubois, Yohan (1)
-
Feng, Yu (1)
-
Foord, Adi (1)
-
Gültekin, Kayhan (1)
-
Habouzit, Melanie (1)
-
Hodges-Kluck, Edmund (1)
-
Li, Yin (1)
-
Ni, Yueying (1)
-
Puerto-Sánchez, Clara (1)
-
Sandoval, Brandon (1)
-
Stemo, Aaron (1)
-
Volonteri, Marta (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present an analysis searching for dual active galactic nuclei (AGN) among 62 high-redshift (2.5 <z< 3.5) X-ray sources selected from the X-UDS, AEGIS-XD, CDF-S, and COSMOS-Legacy Chandra surveys. We aim to quantify the frequency of dual AGN in the high-redshift Universe, which holds implications for black hole merger timescales and low-frequency gravitational wave detection rates. We analyze each X-ray source using BAYMAX, an analysis tool that calculates the Bayes factor for whether a given archival Chandra AGN is more likely a single or dual point source. We find no strong evidence for dual AGN in any individual source in our sample. We increase our sensitivity to search for dual AGN across the sample by comparing our measured distribution of Bayes factors to that expected from a sample composed entirely of single point sources and find no evidence for dual AGN in the sample distribution. Although our analysis utilizes one of the largest Chandra catalogs of high-zX-ray point sources available to study, the findings remain limited by the modest number of sources observed at the highest spatial resolution with Chandra and the typical count rates of the detected sources. Our nondetection allows us to place an upper limit on the X-ray dual AGN fraction at 2.5 <z< 3.5 of 4.8% at the 95% confidence level. Expanding substantially on these results at X-ray wavelengths will require future surveys spanning larger sky areas and extending to fainter fluxes than has been possible with Chandra. We illustrate the potential of the AXIS mission concept in this regard.more » « less
-
Li, Yin; Ni, Yueying; Croft, Rupert_A_C; Di_Matteo, Tiziana; Bird, Simeon; Feng, Yu (, Proceedings of the National Academy of Sciences)Significance Cosmological simulations are indispensable for understanding our Universe, from the creation of the cosmic web to the formation of galaxies and their central black holes. This vast dynamic range incurs large computational costs, demanding sacrifice of either resolution or size and often both. We build a deep neural network to enhance low-resolution dark-matter simulations, generating superresolution realizations that agree remarkably well with authentic high-resolution counterparts on their statistical properties and are orders-of-magnitude faster. It readily applies to larger volumes and generalizes to rare objects not present in the training data. Our study shows that deep learning and cosmological simulations can be a powerful combination to model the structure formation of our Universe over its full dynamic range.more » « less
An official website of the United States government
