skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for the Highest-z Dual Active Galactic Nuclei in the Deepest Chandra Surveys
Abstract We present an analysis searching for dual active galactic nuclei (AGN) among 62 high-redshift (2.5 <z< 3.5) X-ray sources selected from the X-UDS, AEGIS-XD, CDF-S, and COSMOS-Legacy Chandra surveys. We aim to quantify the frequency of dual AGN in the high-redshift Universe, which holds implications for black hole merger timescales and low-frequency gravitational wave detection rates. We analyze each X-ray source using BAYMAX, an analysis tool that calculates the Bayes factor for whether a given archival Chandra AGN is more likely a single or dual point source. We find no strong evidence for dual AGN in any individual source in our sample. We increase our sensitivity to search for dual AGN across the sample by comparing our measured distribution of Bayes factors to that expected from a sample composed entirely of single point sources and find no evidence for dual AGN in the sample distribution. Although our analysis utilizes one of the largest Chandra catalogs of high-zX-ray point sources available to study, the findings remain limited by the modest number of sources observed at the highest spatial resolution with Chandra and the typical count rates of the detected sources. Our nondetection allows us to place an upper limit on the X-ray dual AGN fraction at 2.5 <z< 3.5 of 4.8% at the 95% confidence level. Expanding substantially on these results at X-ray wavelengths will require future surveys spanning larger sky areas and extending to fainter fluxes than has been possible with Chandra. We illustrate the potential of the AXIS mission concept in this regard.  more » « less
Award ID(s):
2125764 2319441
PAR ID:
10556251
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
974
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to accurately discern active massive black holes (BHs) in nearby dwarf galaxies is paramount to understanding the origins and processes of “seed” BHs in the early Universe. We present Chandra X-ray Observatory observations of a sample of three local dwarf galaxies (M*≤ 3 × 109M,z≤ 0.15) previously identified as candidates for hosting active galactic nuclei (AGN). The galaxies were selected from the NASA-Sloan Atlas with spatially coincident X-ray detections in the eROSITA Final Equatorial Depth Survey. Our new Chandra data reveal three X-ray point sources in two of the target galaxies with luminosities between log(L2−10 keV[erg s−1]) = 39.1 and 40.4. Our results support the presence of an AGN in these two galaxies and an ultraluminous X-ray source (ULX) in one of them. For the AGNs, we estimate BH masses ofMBH∼ 105−6Mand Eddington ratios on the order of ∼10−3
    more » « less
  2. Abstract We present a large sample of infrared-luminous candidate active galactic nuclei (AGNs) that lack X-ray detections in Chandra, XMM-Newton, and NuSTAR fields. We selected all optically detected SDSS sources with redshift measurements, combined additional broadband photometry from WISE, UKIDSS, 2MASS, and GALEX, and modeled the spectral energy distributions (SEDs) of our sample sources. We parameterize nuclear obscuration in our SEDs with and uncover thousands of powerful obscured AGNs that lack X-ray counterparts, many of which are identified as AGN candidates based on straightforward WISE photometric criteria. Using the observed luminosity correlation between rest-frame 2–10 keV ( ) and rest-frame AGN ( ), we estimate the intrinsic X-ray luminosities of our sample sources and combine these data with flux limits from X-ray catalogs to determine lower limits on nuclear obscuration. Using the ratio of intrinsic-to-observed X-ray luminosity ( ), we find a significant fraction of sources with column densities approaching  cm –2 , suggesting that multiwavelength observations are necessary to account for the population of heavily obscured AGNs. We simulate the underlying distribution for the X-ray non-detected sources in our sample through survival analysis, and confirm the presence of AGN activity via X-ray stacking. Our results point to a considerable population of extremely obscured AGNs undetected by current X-ray observatories. 
    more » « less
  3. null (Ed.)
    ABSTRACT X-ray observations provide a unique probe of the accretion disc corona of supermassive black holes (SMBHs). In this paper, we present a uniform Chandra X-ray data analysis of a sample of 152 z ≥ 4.5 quasars. We firmly detect 46 quasars of this sample in 0.5–2 keV above 3σ and calculate the upper limits of the X-ray flux of the remaining. We also estimate the power-law photon index of the X-ray spectrum of 31 quasars. 24 of our sample quasars are detected in the FIRST or NVSS radio surveys; all of them are radio-loud. We statistically compare the X-ray properties of our z ≥ 4.5 quasars to other X-ray samples of active galactic nuclei (AGNs) at different redshifts. The relation between the rest-frame X-ray luminosity and other quasar parameters, such as the bolometric luminosity, UV luminosity, or SMBH mass, shows large scatters. These large scatters can be attributed to the narrow luminosity range at the highest redshift, the large measurement error based on relatively poor X-ray data, and the inclusion of radio-loud quasars in the sample. The LX–LUV relationship is significantly sublinear. We do not find a significant redshift evolution of the LX–LUV relation, expressed either in the slope of this relation, or the departure of individual AGNs from the best-fitting αOX–LUV relation (ΔαOX). The median value of the X-ray photon index is Γ ≈ 1.79, which does not show redshift evolution from z = 0 to z ∼ 7. The X-ray and UV properties of the most distant quasars could potentially be used as a standard candle to constrain cosmological models. The large scatter of our sample on the Hubble diagram highlights the importance of future large unbiased deep X-ray and radio surveys in using quasars in cosmological studies. 
    more » « less
  4. Abstract We analyze the cooling and feedback properties of 48 galaxy clusters at redshifts 0.4 < z < 1.3 selected from the South Pole Telescope (SPT) catalogs to evolve like the progenitors of massive and well-studied systems at z ∼ 0. We estimate the radio power at the brightest cluster galaxy (BCG) location of each cluster from an analysis of Australia Telescope Compact Array data. Assuming that the scaling relation between the radio power and active galactic nucleus (AGN) cavity power P cav observed at low redshift does not evolve with redshift, we use these measurements in order to estimate the expected AGN cavity power in the core of each system. We estimate the X-ray luminosity within the cooling radius L cool of each cluster from a joint analysis of the available Chandra X-ray and SPT Sunyaev–Zel’dovich (SZ) data. This allows us to characterize the redshift evolution of the P cav / L cool ratio. When combined with low-redshift results, these constraints enable investigations of the properties of the feedback–cooling cycle across 9 Gyr of cluster growth. We model the redshift evolution of this ratio measured for cool-core clusters by a log-normal distribution Log -  ( α + β z , σ 2 ) and constrain the slope of the mean evolution to β = −0.05 ± 0.47. This analysis improves the constraints on the slope of this relation by a factor of two. We find no evidence of redshift evolution of the feedback–cooling equilibrium in these clusters, which suggests that the onset of radio-mode feedback took place at an early stage of cluster formation. High values of P cav / L cool are found at the BCG location of noncool-core clusters, which might suggest that the timescales of the AGN feedback cycle and the cool core–noncool core transition are different. This work demonstrates that the joint analysis of radio, SZ, and X-ray data solidifies the investigation of AGN feedback at high redshifts. 
    more » « less
  5. Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M<Mstar< 1010Mout to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M,M200< 3 × 1011M. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2. 
    more » « less