skip to main content


Search for: All records

Creators/Authors contains: "Dickinson, Ty A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extreme precipitation over a two-week period can cause significant impacts to life and property. Trustworthy and easy-to-understand forecasts of these extreme periods on the subseasonal-to-seasonal timeframe may provide additional time for planning. The Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted three workshops over six years to engage with stakeholders to learn what is needed for decision-making for subseasonal precipitation. In this study experimental subseasonal to seasonal (S2S) forecast products were designed, using knowledge gained from previous stakeholder workshops, and shown to decision-makers to evaluate the products for two 14-day extreme precipitation period scenarios. Our stakeholders preferred a combination of products that covered the spatial extent, regional daily values, with associated uncertainty, and text narratives with anticipated impacts for planning within the S2S timeframe. When targeting longer extremes, having information regarding timing of expected impacts was seen as crucial for planning. We found that there is increased uncertainty tolerance with stakeholders when using products at longer lead times that typical skill metrics, such as critical success index or anomaly correlation coefficient, do not capture. Therefore, the use of object-oriented verification, that allows for more flexibility in spatial uncertainty, might be beneficial for evaluating S2S forecasts. These results help to create a foundation for design, verification, and implementation of future operational forecast products with longer lead times, while also providing an example for future workshops that engage both researchers and decision-makers.

     
    more » « less
    Free, publicly-accessible full text available May 16, 2025
  2. Abstract

    Extreme precipitation events can cause significant impacts to life, property, and the economy. As forecasting capabilities increase, the subseasonal-to-seasonal (S2S) time scale provides an opportunity for advanced notice of impactful precipitation events. Building on a previous workshop, the Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted a second workshop virtually in the fall of 2021. The workshop engaged a variety of practitioners, including emergency managers, water managers, tribal environmental professionals, and National Weather Service meteorologists. While the team’s first workshop examined the “big picture” in how practitioners define “extreme precipitation” and how precipitation events impact their jobs, this workshop focused on details of S2S precipitation products, both current and potential future decision tools. Discussions and activities in this workshop assessed how practitioners use existing forecast products to make decisions about extreme precipitation, how they interpret newly developed educational tools from the PRES2iP team, and how they manage uncertainty in forecasts. By collaborating with practitioners, the PRES2iP team plans to use knowledge gained going forward to create more educational and operational tools related to S2S extreme precipitation event prediction, helping practitioners to make more informed decisions.

     
    more » « less
  3. Abstract Extreme precipitation across multiple time scales is a natural hazard that creates a significant risk to life, with a commensurately large cost through property loss. We devise a method to create 14-day extreme-event windows that characterize precipitation events in the contiguous United States (CONUS) for the years 1915–2018. Our algorithm imposes thresholds for both total precipitation and the duration of the precipitation to identify events with sufficient length to accentuate the synoptic and longer time scale contribution to the precipitation event. Kernel density estimation is employed to create extreme-event polygons that are formed into a database spanning from 1915 through 2018. Using the developed database, we clustered events into regions using a k -means algorithm. We define the “hybrid index,” a weighted composite of silhouette score and number of clustered events, to show that the optimal number of clusters is 15. We also show that 14-day extreme precipitation events are increasing in the CONUS, specifically in the Dakotas and much of New England. The algorithm presented in this work is designed to be sufficiently flexible to be extended to any desired number of days on the subseasonal-to-seasonal (S2S) time scale (e.g., 30 days). Additional databases generated using this framework are available for download from our GitHub. Consequently, these S2S databases can be analyzed in future works to determine the climatology of S2S extreme precipitation events and be used for predictability studies for identified events. 
    more » « less