skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on May 16, 2025

Title: Listening to Stakeholders III: Potential Users Evaluate Product Content and Design for Subseasonal Extreme Precipitation Forecasts
Abstract

Extreme precipitation over a two-week period can cause significant impacts to life and property. Trustworthy and easy-to-understand forecasts of these extreme periods on the subseasonal-to-seasonal timeframe may provide additional time for planning. The Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted three workshops over six years to engage with stakeholders to learn what is needed for decision-making for subseasonal precipitation. In this study experimental subseasonal to seasonal (S2S) forecast products were designed, using knowledge gained from previous stakeholder workshops, and shown to decision-makers to evaluate the products for two 14-day extreme precipitation period scenarios. Our stakeholders preferred a combination of products that covered the spatial extent, regional daily values, with associated uncertainty, and text narratives with anticipated impacts for planning within the S2S timeframe. When targeting longer extremes, having information regarding timing of expected impacts was seen as crucial for planning. We found that there is increased uncertainty tolerance with stakeholders when using products at longer lead times that typical skill metrics, such as critical success index or anomaly correlation coefficient, do not capture. Therefore, the use of object-oriented verification, that allows for more flexibility in spatial uncertainty, might be beneficial for evaluating S2S forecasts. These results help to create a foundation for design, verification, and implementation of future operational forecast products with longer lead times, while also providing an example for future workshops that engage both researchers and decision-makers.

 
more » « less
Award ID(s):
1944177 1663840
PAR ID:
10512517
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Extreme precipitation events can cause significant impacts to life, property, and the economy. As forecasting capabilities increase, the subseasonal-to-seasonal (S2S) time scale provides an opportunity for advanced notice of impactful precipitation events. Building on a previous workshop, the Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods (PRES2iP) project team conducted a second workshop virtually in the fall of 2021. The workshop engaged a variety of practitioners, including emergency managers, water managers, tribal environmental professionals, and National Weather Service meteorologists. While the team’s first workshop examined the “big picture” in how practitioners define “extreme precipitation” and how precipitation events impact their jobs, this workshop focused on details of S2S precipitation products, both current and potential future decision tools. Discussions and activities in this workshop assessed how practitioners use existing forecast products to make decisions about extreme precipitation, how they interpret newly developed educational tools from the PRES2iP team, and how they manage uncertainty in forecasts. By collaborating with practitioners, the PRES2iP team plans to use knowledge gained going forward to create more educational and operational tools related to S2S extreme precipitation event prediction, helping practitioners to make more informed decisions.

     
    more » « less
  2. Abstract Heavy precipitation events and their associated flooding can have major impacts on communities and stakeholders. There is a lack of knowledge, however, about how stakeholders make decisions at the subseasonal-to-seasonal (S2S) time scales (i.e., 2 weeks to 3 months). To understand how decisions are made and S2S predictions are or can be used, the project team for “Prediction of Rainfall Extremes at Subseasonal to Seasonal Periods” (PRES 2 iP) conducted a 2-day workshop in Norman, Oklahoma, during July 2018. The workshop engaged 21 professionals from environmental management and public safety communities across the contiguous United States in activities to understand their needs for S2S predictions of potential extended heavy precipitation events. Discussions and role-playing activities aimed to identify how workshop participants manage uncertainty and define extreme precipitation, the time scales over which they make key decisions, and the types of products they use currently. This collaboration with stakeholders has been an integral part of PRES 2 iP research and has aimed to foster actionable science. The PRES 2 iP team is using the information produced from this workshop to inform the development of predictive models for extended heavy precipitation events and to collaboratively design new forecast products with our stakeholders, empowering them to make more-informed decisions about potential extreme precipitation events. 
    more » « less
  3. Abstract

    We describe a new effort to enhance climate forecast relevance and usability through the development of a system for evaluating and displaying real‐time subseasonal to seasonal (S2S) climate forecasts on a watershed scale. Water managers may not use climate forecasts to their full potential due to perceived low skill, mismatched spatial and temporal resolutions, or lack of knowledge or tools to ingest data. Most forecasts are disseminated as large‐domain maps or gridded datasets and may be systematically biased relative to watershed climatologies. Forecasts presented on a watershed scale allow water managers to view forecasts for their specific basins, thereby increasing the usability and relevance of climate forecasts. This paper describes the formulation of S2S climate forecast products based on the Climate Forecast System version 2 (CFSv2) and the North American Multi‐Model Ensemble (NMME). Forecast products include bi‐weekly CFSv2 forecasts, and monthly and seasonal NMME forecasts. Precipitation and temperature forecasts are aggregated spatially to a United States Geological Survey (USGS) hydrologic unit code 4 (HUC‐4) watershed scale. Forecast verification reveals appreciable skill in the first two bi‐weekly periods (Weeks 1–2 and 2–3) from CFSv2, and usable skill in NMME Month 1 forecast with varying skills at longer lead times dependent on the season. Application of a bias‐correction technique (quantile mapping) eliminates forecast bias in the CFSv2 reforecasts, without adding significantly to correlation skill.

     
    more » « less
  4. Abstract

    Precipitation forecasts, particularly at subseasonal-to-seasonal (S2S) time scale, are essential for informed and proactive water resource management. Although S2S precipitation forecasts have been evaluated, no systematic decomposition of the skill, Nash–Sutcliffe efficiency (NSE) coefficient, has been analyzed toward understanding the forecast accuracy. We decompose the NSE of S2S precipitation forecast into its three components—correlation, conditional bias, and unconditional bias—by four seasons, three lead times (1–12, 1–22, and 1–32 days), and three models, European Centre of Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction’s (NCEP) Climate Forecast System (CFS) model, and Environment and Climate Change Canada (ECCC), over the conterminous United States (CONUS). Application of a dry threshold, removal of grid cells with seasonal climatological precipitation means below 0.01 in. per day, is important as the NSE and correlations are lower across all seasons after masking areas with low precipitation values. Further, a west-to-east gradient in S2S forecast skill exists, and forecast skill was better during the winter months and for areas closer to the coast. Overall, ECMWF’s model performance was stronger than both ECCC and NCEP CFS’s performance, mainly for the forecasts issued during the fall and winter months. However, ECCC and NCEP CFS performed better for the forecast issued during the spring months and for areas further from the coast. Postprocessing using simple model output statistics could reduce both unconditional and conditional biases to zero, thereby offering better skill for regimes with high correlation. Our decomposition results show that efforts should focus on improving model parameterization and initialization schemes for climate regimes with low correlation.

     
    more » « less
  5. Abstract Extreme weather events have devastating impacts on human health, economic activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal prediction on time scales of several weeks for many extreme events. Here we provide an overview of subseasonal predictability for case studies of some of the most prominent extreme events across the globe using the ECMWF S2S prediction system: heatwaves, cold spells, heavy precipitation events, and tropical and extratropical cyclones. The considered heatwaves exhibit predictability on time scales of 3–4 weeks, while this time scale is 2–3 weeks for cold spells. Precipitation extremes are the least predictable among the considered case studies. ­Tropical cyclones, on the other hand, can exhibit probabilistic predictability on time scales of up to 3 weeks, which in the presented cases was aided by remote precursors such as the Madden–Julian oscillation. For extratropical cyclones, lead times are found to be shorter. These case studies clearly illustrate the potential for event-dependent advance warnings for a wide range of extreme events. The subseasonal predictability of extreme events demonstrated here allows for an extension of warning horizons, provides advance information to impact modelers, and informs communities and stakeholders affected by the impacts of extreme weather events. 
    more » « less