Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blanchette, Jasmin; Kovács, Laura; Pattinson, Dirk (Ed.)Dynamic arrays, also referred to as vectors, are fundamental data structures used in many programs. Modeling their semantics efficiently is crucial when reasoning about such programs. The theory of arrays is widely supported but is not ideal, because the number of elements is fixed (determined by its index sort) and cannot be adjusted, which is a problem, given that the length of vectors often plays an important role when reasoning about vector programs. In this paper, we propose reasoning about vectors using a theory of sequences. We introduce the theory, propose a basic calculus adapted from one for the theory of strings, and extend it to efficiently handle common vector operations. We prove that our calculus is sound and show how to construct a model when it terminates with a saturated configuration. Finally, we describe an implementation of the calculus in cvc5 and demonstrate its efficacy by evaluating it on verification conditions for smart contracts and benchmarks derived from existing array benchmarks.more » « less
-
Blanchette, Jasmin; Kovacs, Laura; Pattinson, Dirk (Ed.)Dynamic arrays, also referred to as vectors, are fundamental data structures used in many programs. Modeling their semantics efficiently is crucial when reasoning about such programs. The theory of arrays is widely supported but is not ideal, because the number of elements is fixed (determined by its index sort) and cannot be adjusted, which is a problem, given that the length of vectors often plays an important role when reasoning about vector programs. In this paper, we propose reasoning about vectors using a theory of sequences. We introduce the theory, propose a basic calculus adapted from one for the theory of strings, and extend it to efficiently handle common vector operations. We prove that our calculus is sound and show how to construct a model when it terminates with a saturated configuration. Finally, we describe an implementation of the calculus in cvc5 and demonstrate its efficacy by evaluating it on verification conditions for smart contracts and benchmarks derived from existing array benchmarks.more » « less
-
Deep neural networks are revolutionizing the way complex systems are designed. Consequently, there is a pressing need for tools and techniques for network analysis and certification. To help in addressing that need, we present Marabou, a framework for verifying deep neural networks. Marabou is an SMT-based tool that can answer queries about a network’s properties by transforming these queries into constraint satisfaction problems. It can accommodate networks with different activation functions and topologies, and it performs high-level reasoning on the network that can curtail the search space and improve performance. It also supports parallel execution to further enhance scalability. Marabou accepts multiple input formats, including protocol buffer files generated by the popular TensorFlow framework for neural networks. We describe the system architecture and main components, evaluate the technique and discuss ongoing work.more » « less
An official website of the United States government
