skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reasoning About Vectors Using an SMT Theory of Sequences
Dynamic arrays, also referred to as vectors, are fundamental data structures used in many programs. Modeling their semantics efficiently is crucial when reasoning about such programs. The theory of arrays is widely supported but is not ideal, because the number of elements is fixed (determined by its index sort) and cannot be adjusted, which is a problem, given that the length of vectors often plays an important role when reasoning about vector programs. In this paper, we propose reasoning about vectors using a theory of sequences. We introduce the theory, propose a basic calculus adapted from one for the theory of strings, and extend it to efficiently handle common vector operations. We prove that our calculus is sound and show how to construct a model when it terminates with a saturated configuration. Finally, we describe an implementation of the calculus in cvc5 and demonstrate its efficacy by evaluating it on verification conditions for smart contracts and benchmarks derived from existing array benchmarks.  more » « less
Award ID(s):
2110397
PAR ID:
10388062
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Blanchette, Jasmin; Kovacs, Laura; Pattinson, Dirk
Date Published:
Journal Name:
International Joint Conference on Automated Reasoning (IJCAR)
Volume:
13385
Page Range / eLocation ID:
125-143
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blanchette, Jasmin; Kovács, Laura; Pattinson, Dirk (Ed.)
    Dynamic arrays, also referred to as vectors, are fundamental data structures used in many programs. Modeling their semantics efficiently is crucial when reasoning about such programs. The theory of arrays is widely supported but is not ideal, because the number of elements is fixed (determined by its index sort) and cannot be adjusted, which is a problem, given that the length of vectors often plays an important role when reasoning about vector programs. In this paper, we propose reasoning about vectors using a theory of sequences. We introduce the theory, propose a basic calculus adapted from one for the theory of strings, and extend it to efficiently handle common vector operations. We prove that our calculus is sound and show how to construct a model when it terminates with a saturated configuration. Finally, we describe an implementation of the calculus in cvc5 and demonstrate its efficacy by evaluating it on verification conditions for smart contracts and benchmarks derived from existing array benchmarks. 
    more » « less
  2. A fundamental challenge in automated reasoning about programming assignments at scale is clustering student submissions based on their underlying algorithms. State-of-the-art clustering techniques are sensitive to control structure variations, cannot cluster buggy solutions with similar correct solutions, and either require expensive pair-wise program analyses or training efforts. We propose a novel technique that can cluster small imperative programs based on their algorithmic essence: (A) how the input space is partitioned into equivalence classes and (B) how the problem is uniquely addressed within individual equivalence classes. We capture these algorithmic aspects as two quantitative semantic program features that are merged into a program's vector representation. Programs are then clustered using their vector representations. The computation of our first semantic feature leverages model counting to identify the number of inputs belonging to an input equivalence class. The computation of our second semantic feature abstracts the program's data flow by tracking the number of occurrences of a unique pair of consecutive values of a variable during its lifetime. The comprehensive evaluation of our tool SemCluster on benchmarks drawn from solutions to small programming assignments shows that SemCluster (1) generates far fewer clusters than other clustering techniques, (2) precisely identifies distinct solution strategies, and (3) boosts the performance of clustering-based program repair, all within a reasonable amount of time. 
    more » « less
  3. The universal composability (UC) framework is the established standard for analyzing cryptographic protocols in a modular way, such that security is preserved under concurrent composition with arbitrary other protocols. However, although UC is widely used for on-paper proofs, prior attempts at systemizing it have fallen short, either by using a symbolic model (thereby ruling out computational reduction proofs), or by limiting its expressiveness. In this paper, we lay the groundwork for building a concrete, executable implementation of the UC framework. Our main contribution is a process calculus, dubbed the Interactive Lambda Calculus (ILC). ILC faithfully captures the computational model underlying UC—interactive Turing machines (ITMs)—by adapting ITMs to a subset of the π-calculus through an affine typing discipline. In other words, well-typed ILC programs are expressible as ITMs. In turn, ILC’s strong confluence property enables reasoning about cryptographic security reductions. We use ILC to develop a simplified implementation of UC called SaUCy. 
    more » « less
  4. Gurfinkel, Arie; Ganesh, Vijay (Ed.)
    Abstract The dominant state-of-the-art approach for solving bit-vector formulas in Satisfiability Modulo Theories (SMT) is bit-blasting, an eager reduction to propositional logic. Bit-blasting is surprisingly efficient in practice but does not generally scale well with increasing bit-widths, especially when bit-vector arithmetic is present. In this paper, we present a novel CEGAR-style abstraction-refinement procedure for the theory of fixed-size bit-vectors that significantly improves the scalability of bit-blasting. We provide lemma schemes for various arithmetic bit-vector operators and an abduction-based framework for synthesizing refinement lemmas. We extended the state-of-the-art SMT solver Bitwuzla with our abstraction-refinement approach and show that it significantly improves solver performance on a variety of benchmark sets, including industrial benchmarks that arise from smart contract verification. 
    more » « less
  5. Session types provide a formal type system to define and verify communication protocols between message-passing processes. In order to analyze randomized systems, recent works have extended session types with probabilistic type constructors. Unfortunately, all the proposed extensions only support constant probabilities which limits their applicability to real-world systems. Our work addresses this limitation by introducing probabilistic refinement session types which enable symbolic reasoning for concurrent probabilistic systems in a core calculus we call PReST. The type system is carefully designed to be a conservative extension of refinement session types and supports both probabilistic and regular choice type operators. We also implement PReST in a prototype which we use for validating probabilistic concurrent programs. The added expressive power leads to significant challenges, both in the meta theory and implementation of PReST, particularly with type checking: it requires reconstructing intermediate types for channels when type checking probabilistic branching expressions. The theory handles this by semantically quantifying refinement variables in probabilistic typing rules, a deviation from standard refinement type systems. The implementation relies on a bi-directional type checker that uses an SMT solver to reconstruct the intermediate types minimizing annotation overhead and increasing usability. To guarantee that probabilistic processes are almost-surely terminating, we integrate cost analysis into our type system to obtain expected upper bounds on recursion depth. We evaluate PReST on a wide variety of benchmarks from 4 categories: (i) randomized distributed protocols such as Itai and Rodeh's leader election, bounded retransmission, etc., (ii) parametric Markov chains such as random walks, (iii) probabilistic analysis of concurrent data structures such as queues, and (iv) distributions obtained by composing uniform distributions using operators like max, and sum. Our experiments show that the PReST type checker scales to large programs with sophisticated probabilistic distributions. 
    more » « less