skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Aidong Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 5, 2026
  2. Abonazel, Mohamed R (Ed.)
    Agricultural workers are essential to the supply chain for our daily food, and yet, many face harmful work conditions, including garnished wages, and other labor violations. Workers on H-2A visas are particularly vulnerable due to the precarity of their immigration status being tied to their employer. Although worksite inspections are one mechanism to detect such violations, many labor violations affecting agricultural workers go undetected due to limited inspection resources. In this study, we identify multiple state and industry level factors that correlate with H-2A violations identified by the U.S. Department of Labor’s Wage and Hour Division using a multilevel zero-inflated negative binomial model. We find that three state-level factors (average farm acreage size, the number of agricultural establishments with less than 20 employees, and higher poverty rates) are correlated with H-2A violations. These findings offer valuable insights into where H-2A violations are being detected at the state and industry levels. 
    more » « less
  3. Ransomware has become a serious threat in the cyberspace. Existing software pattern-based malware detectors are specific for certain ransomware and may not capture new variants. Recognizing a common essential behavior of ransomware - employing local cryptographic software for malicious encryption and therefore leaving footprints on the victim machine's caches, this work proposes an anti-ransomware methodology, Ran$Net, based on hardware activities. It consists of a passive cache monitor to log suspicious cache activities, and a follow-on non-profiled deep learning analysis strategy to retrieve the secret cryptographic key from the timing traces generated by the monitor. We implement the first of its kind tool to combat an open-source ransomware and successfully recover the secret key. 
    more » « less