skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancing detection of labor violations in the agricultural sector: A multilevel generalized linear regression model of H-2A violation counts
Agricultural workers are essential to the supply chain for our daily food, and yet, many face harmful work conditions, including garnished wages, and other labor violations. Workers on H-2A visas are particularly vulnerable due to the precarity of their immigration status being tied to their employer. Although worksite inspections are one mechanism to detect such violations, many labor violations affecting agricultural workers go undetected due to limited inspection resources. In this study, we identify multiple state and industry level factors that correlate with H-2A violations identified by the U.S. Department of Labor’s Wage and Hour Division using a multilevel zero-inflated negative binomial model. We find that three state-level factors (average farm acreage size, the number of agricultural establishments with less than 20 employees, and higher poverty rates) are correlated with H-2A violations. These findings offer valuable insights into where H-2A violations are being detected at the state and industry levels.  more » « less
Award ID(s):
1935618
PAR ID:
10585049
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Abonazel, Mohamed R
Publisher / Repository:
PLOS ONE
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
5
ISSN:
1932-6203
Page Range / eLocation ID:
e0302960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The food and agriculture industries are critical to the U.S. economy, ensuring the daily food supply while facing significant challenges. These issues include ethical concerns related to labor exploitation and the need to improve resilience against disruptions. Addressing these issues offers an opportunity to create supply chains that are both more ethical and more resilient. This dissertation focuses on two interconnected aspects of agricultural supply chains. The first examines strategies for disrupting exploitative labor practices and ensuring better protection for farm workers. The second explores methods to enhance the resilience of ethical supply chains against various disruptions, including natural disasters and labor shortages. Together, these aspects aim to contribute to the development of agricultural supply chains that are both ethically sound and resilient to disruptions. Although farm workers play an essential role in the success of these industries, they are vulnerable to labor exploitation and trafficking. Labor violations affecting these workers often go undetected due to limited government resources for inspection. Furthermore, many farm workers face barriers to disclosing their poor working conditions due to their immigration status and mistrust of law enforcement, making them even more susceptible to exploitation. To address this issue, we conducted research to provide strategies for government agencies involved in the H-2A visa program and the screening of H-2A employers to prioritize workplaces for inspection. In the first study, we employed multilevel zero-inflated negative binomial regression analysis to extract patterns and identify factors correlated with detecting H-2A labor violations. We provide suggestions for improving inspection strategies based on our research results. This involved identifying high-risk locations and labor-intensive worksites with a greater likelihood of labor violations and emphasizing the importance of allocating sufficient task force funding and resources to prioritize inspections in these areas. Labor trafficking networks in U.S. agricultural supply chains exploit vulnerable workers, including migrants and unauthorized laborers, while evading detection through complex structures, making them difficult to disrupt. In the second study, we developed a comprehensive labor trafficking network model that maps the intricate connections and operations of these networks. Using a bi-level integer programming approach, we optimized intervention strategies to disrupt trafficking operations, balancing resource constraints with the need for maximum impact. By employing K-means clustering, we classified interventions based on their effectiveness, providing clear, data-driven guidance for anti-trafficking agencies to prioritize efforts and allocate resources efficiently. This approach offers a powerful tool for enhancing detection and improving the overall effectiveness of anti-trafficking initiatives in limited resource environments. The importance of food and agricultural supply chains in our daily lives cannot be emphasized enough. While the prior two studies sought to disrupt exploitative work conditions in agricultural supply chains, this dissertation also seeks to help supply chains that are operating ethically do so in an effective manner. Any disruption in these chains can lead to severe consequences, from food shortages to economic instability. Therefore, it is critical to develop effective strategies to mitigate the impact of disruptions in these non-exploitative supply chains. In the third study, we developed a scenario-based two-stage stochastic model to mitigate the impact of multiple disruptions in agricultural supply chains. This approach enables a detailed evaluation of strategies such as multi-sourcing and the use of backup facilities to reduce disruption impacts. The model incorporates flexibility to handle both partial and full facility disruptions, while accounting for disruptions affecting both primary and backup facilities to provide a comprehensive analysis of supply chain vulnerability and recovery. By employing a multi-period time horizon, the model evaluates supply chain performance over time, considering random disruption start times and the possibility of simultaneous disruptions across multiple echelons with varying severity. The analysis highlights the challenges posed by multiple sources of uncertainty in supply chain decision-making and emphasizes the need for further research to develop actionable strategies for improving resilience in agricultural supply chains. 
    more » « less
  2. Abstract Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system. 
    more » « less
  3. null (Ed.)
    Crowdsourcing markets provide workers with a centralized place to find paid work. What may not be obvious at first glance is that, in addition to the work they do for pay, crowd workers also have to shoulder a variety of unpaid invisible labor in these markets, which ultimately reduces workers' hourly wages. Invisible labor includes finding good tasks, messaging requesters, or managing payments. However, we currently know little about how much time crowd workers actually spend on invisible labor or how much it costs them economically. To ensure a fair and equitable future for crowd work, we need to be certain that workers are being paid fairly for ALL of the work they do. In this paper, we conduct a field study to quantify the invisible labor in crowd work. We build a plugin to record the amount of time that 100 workers on Amazon Mechanical Turk dedicate to invisible labor while completing 40,903 tasks. If we ignore the time workers spent on invisible labor, workers' median hourly wage was $3.76. But, we estimated that crowd workers in our study spent 33% of their time daily on invisible labor, dropping their median hourly wage to $2.83. We found that the invisible labor differentially impacts workers depending on their skill level and workers' demographics. The invisible labor category that took the most time and that was also the most common revolved around workers having to manage their payments. The second most time-consuming invisible labor category involved hyper-vigilance, where workers vigilantly watched over requesters' profiles for newly posted work or vigilantly searched for labor. We hope that through our paper, the invisible labor in crowdsourcing becomes more visible, and our results help to reveal the larger implications of the continuing invisibility of labor in crowdsourcing. 
    more » « less
  4. California’s agricultural workers are a vulnerable population due to their undocumented status and poor working conditions. This paper describes community engagement with NGO workers, farm laborers, and farm owners to identify and address the effects of climate change, namely heat stress, on, strawberry field workers. We deployed personal informatics devices in a longitudinal study with three field workers for a month and a half and presented the collected statistics back to them, asking them to reflect on their personal health (e.g., exposure to heat stress) and work data. We found that field workers normalized grit - the irregularity, adversity, competitiveness, and helplessness of their labor - thereby limiting the promise of personal informatics to help users lead healthier lives. Implicitly, personal informatics supports white collar workers such as information workers; overall, however, our study suggests a mismatch between current designs and front-line work which involve intensive physical work requirements. 
    more » « less
  5. The aftermath of industry-wide mass layoffs has led to an increasingly discontent and disillusioned tech workforce. Our empirical study with 29 laid off tech workers presents critical reflections on tech work and the tech industry in the aftermath of mass layoffs. Through weekly creative reflection activities over 5 weeks as well as focus groups, we find that tech workers experience alienation and unfulfillment with their work. Tech workers expressed conflicted emotions in assessing their attachment to tech work as a site of labor, oscillating between discomfort with the current status of the tech industry and lack of agency in choosing alternatives. We argue that tech workers are embroiled in cruelly optimistic relationships with tech work, and trace the implications of this on conflicting sociotechnical imaginaries shaping tech work, affective attachments in the tech industry, and tech worker resistance and organizing. 
    more » « less