skip to main content


Search for: All records

Creators/Authors contains: "Ding, Lijun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 14, 2025
  2. Abstract

    Empirical evidence suggests that for a variety of overparameterized nonlinear models, most notably in neural network training, the growth of the loss around a minimizer strongly impacts its performance. Flat minima—those around which the loss grows slowly—appear to generalize well. This work takes a step towards understanding this phenomenon by focusing on the simplest class of overparameterized nonlinear models: those arising in low-rank matrix recovery. We analyse overparameterized matrix and bilinear sensing, robust principal component analysis, covariance matrix estimation and single hidden layer neural networks with quadratic activation functions. In all cases, we show that flat minima, measured by the trace of the Hessian, exactly recover the ground truth under standard statistical assumptions. For matrix completion, we establish weak recovery, although empirical evidence suggests exact recovery holds here as well. We complete the paper with synthetic experiments that illustrate our findings.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  3. null (Ed.)