skip to main content

Search for: All records

Creators/Authors contains: "Ding, Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available September 27, 2024
  3. In this report, CeO 2 and SiO 2 supported 1 wt% Ru catalysts were synthesized and studied for dry reforming of methane (DRM) by introducing non-thermal plasma (NTP) in a dielectric barrier discharge (DBD) fixed bed reactor. From quadrupole mass spectrometer (QMS) data, it is found that introducing non-thermal plasma in thermo-catalytic DRM promotes higher CH 4 and CO 2 conversion and syngas (CO + H 2 ) yield than those under thermal catalysis only conditions. According to the H 2 -TPR, CO 2 -TPD, and CO-TPD profiles, reducible CeO 2 supported Ru catalysts presented better activity compared to their irreducible SiO 2 supported Ru counterparts. For instance, the molar concentrations of CO and H 2 were 16% and 9%, respectively, for plasma-assisted thermo-catalytic DRM at 350 °C, while no apparent conversion was observed at the same temperature for thermo-catalytic DRM. Highly energetic electrons, ions, and radicals under non-equilibrium and non-thermal plasma conditions are considered to contribute to the activation of strong C–H bonds in CH 4 and C–O bonds in CO 2 , which significantly improves the CH 4 /CO 2 conversion during DRM reaction at low temperatures. At 450 °C, the 1 wt% Ru/CeO 2 nanorods sample showed the highest catalytic activity with 51% CH 4 and 37% CO 2 conversion compared to 1 wt% Ru/CeO 2 nanocubes (40% CH 4 and 30% CO 2 ). These results clearly indicate that the support shape and reducibility affect the plasma-assisted DRM reaction. This enhanced DRM activity is ascribed to the surface chemistry and defect structures of the CeO 2 nanorods support that can provide active surface facets, higher amounts of mobile oxygen and oxygen vacancy, and other surface defects. 
    more » « less
  4. Abstract

    Interface plays a critical role in determining the physical properties and device performance of heterostructures. Traditionally, lattice mismatch, resulting from the different lattice constants of the heterostructure, can induce epitaxial strain. Over past decades, strain engineering has been demonstrated as a useful strategy to manipulate the functionalities of the interface. However, mismatch of crystal symmetry at the interface is relatively less studied due to the difficulty of atomically structural characterization, particularly for the epitaxy of low symmetry correlated materials on the high symmetry substrates. Overlooking those phenomena restrict the understanding of the intrinsic properties of the as‐ determined heterostructure, resulting in some long‐standing debates including the origin of magnetic and ferroelectric dead layers. Here, perovskite LaCoO3‐SrTiO3superlattice (SL) is used as a model system to show that the crystal symmetry effect can be isolated by the existing interface strain. Combining the state‐of‐art diffraction and electron microscopy, it is found that the symmetry mismatch of LaCoO3‐SrTiO3SL can be tuned by manipulating the SrTiO3layer thickness to artificially control the magnetic properties. The work suggests that crystal symmetry mismatch can also be designed and engineered to act as an effective strategy to generate functional properties of perovskite oxides.

    more » « less