- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Ding, Zheng (5)
-
Tu, Zhuowen (5)
-
Sha, Zhizhou (2)
-
Wang, Yilin (2)
-
Chen, Zeyuan (1)
-
Parmar, Gaurav (1)
-
Wang, Zirui (1)
-
Welling, Max (1)
-
Wu, Jiajun Wu (1)
-
Xiong, Tianyi (1)
-
Xu, Weijian (1)
-
Xu, Xin (1)
-
Xu, Yifan (1)
-
Yang, Yang Yang (1)
-
Zhang, Mengqi (1)
-
Zhong, Liangjun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wang, Zirui; Sha, Zhizhou; Ding, Zheng; Wang, Yilin; Tu, Zhuowen (, Proceedings)
-
Ding, Zheng; Zhang, Mengqi; Wu, Jiajun Wu; Tu, Zhuowen (, ICLR)
-
Xu, Xin; Xiong, Tianyi; Ding, Zheng; Tu, Zhuowen (, IEEE)
-
Ding, Zheng; Xu, Yifan; Xu, Weijian; Parmar, Gaurav; Yang, Yang Yang; Welling, Max; Tu, Zhuowen (, IEEE Computer Society Conference on Computer Vision and Pattern Recognition)We propose an algorithm, guided variational autoencoder (Guided-VAE), that is able to learn a controllable generative model by performing latent representation disentanglement learning. The learning objective is achieved by providing signals to the latent encoding/embedding in VAE without changing its main backbone architecture, hence retaining the desirable properties of the VAE. We design an unsupervised strategy and a supervised strategy in Guided-VAE and observe enhanced modeling and controlling capability over the vanilla VAE. In the unsupervised strategy, we guide the VAE learning by introducing a lightweight decoder that learns latent geometric transformation and principal components; in the supervised strategy, we use an adversarial excitation and inhibition mechanism to encourage the disentanglement of the latent variables. Guided-VAE enjoys its transparency and simplicity for the general representation learning task, as well as disentanglement learning. On a number of experiments for representation learning, improved synthesis/sampling, better disentanglement for classification, and reduced classification errors in meta learning have been observed.more » « less
An official website of the United States government

Full Text Available