skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dionicio, Viviana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  2. The structure of the lithosphere-asthenosphere boundary (LAB) beneath oceanic plates is key to understanding how plates interact with the underlying mantle. Prior contradictory geophysical observations have been used to argue for a thin, melt-rich boundary that decouples the plate from the rest of the mantle, or for a much broader anisotropic and thermally controlled boundary that indicates significant coupling with the rest of the mantle. The predictions of models based on these interpretations can be tested most easily in a subduction zone setting where the steady increase in pressure at the base of the subducting plate’s LAB will have differing effects on melt and anisotropy. Melt remains stable within the mantle to ~150-250 km (for carbonate melt) or to ~330 km (for silicate melt), while anisotropy induced by different processes should have no significant change until ~250 km to ~440 km depth. We calculate P-to-S receiver functions (PRFs) using varying frequency bands at broadband seismic stations with >4 years of data from the Servicio Geológico Colombiano’s Red Sismológica Nacional de Colombia to investigate the characteristics of the LAB of the subducting Nazca oceanic plate from the coast to the Andean foreland (corresponding to slab LAB depths of ~50 km to >400 km). The use of PRFs permits identification and analysis of anisotropy across the boundary while calculation at a range of frequency bands permits tuning of the PRFs to differing spatial scales to determine the size and abruptness of the boundary. We find that the P-to-S converted phase of the subducted Nazca plate’s LAB is detectable 4-5 seconds after the converted phase of the plate’s Moho to at least ~150 km depth. Assuming the slab has an average Vp/Vs of 1.75 to 1.78 and Vp of 8.2 km/s (+2.5% dVp), this corresponds to a plate thickness of ~50 km, matching the expected thickness given the Nazca plate’s age in the region (~10-20 Myrs). We find that the Nazca plate’s LAB is most consistently detectable in the <0.24 Hz band and largely undetectable in the <2.4 Hz band, indicating the LAB is gradational and between 10 and 30 km in thickness. Amplitude variations and complexities in the LAB converted phases further indicate that the boundary marks a change in anisotropy most consistent with the LAB representing a sheared zone between the plate and underlying mantle. 
    more » « less