Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared.
more »
« less
A Thick, Sheared Zone at the Base of an Oceanic Plate: The Lithosphere-Asthenosphere Boundary of the Subducting Nazca Plate in Colombia as Revealed through P-to-S Receiver Functions
The structure of the lithosphere-asthenosphere boundary (LAB) beneath oceanic plates is key to understanding how plates interact with the underlying mantle. Prior contradictory geophysical observations have been used to argue for a thin, melt-rich boundary that decouples the plate from the rest of the mantle, or for a much broader anisotropic and thermally controlled boundary that indicates significant coupling with the rest of the mantle. The predictions of models based on these interpretations can be tested most easily in a subduction zone setting where the steady increase in pressure at the base of the subducting plate’s LAB will have differing effects on melt and anisotropy. Melt remains stable within the mantle to ~150-250 km (for carbonate melt) or to ~330 km (for silicate melt), while anisotropy induced by different processes should have no significant change until ~250 km to ~440 km depth. We calculate P-to-S receiver functions (PRFs) using varying frequency bands at broadband seismic stations with >4 years of data from the Servicio Geológico Colombiano’s Red Sismológica Nacional de Colombia to investigate the characteristics of the LAB of the subducting Nazca oceanic plate from the coast to the Andean foreland (corresponding to slab LAB depths of ~50 km to >400 km). The use of PRFs permits identification and analysis of anisotropy across the boundary while calculation at a range of frequency bands permits tuning of the PRFs to differing spatial scales to determine the size and abruptness of the boundary. We find that the P-to-S converted phase of the subducted Nazca plate’s LAB is detectable 4-5 seconds after the converted phase of the plate’s Moho to at least ~150 km depth. Assuming the slab has an average Vp/Vs of 1.75 to 1.78 and Vp of 8.2 km/s (+2.5% dVp), this corresponds to a plate thickness of ~50 km, matching the expected thickness given the Nazca plate’s age in the region (~10-20 Myrs). We find that the Nazca plate’s LAB is most consistently detectable in the <0.24 Hz band and largely undetectable in the <2.4 Hz band, indicating the LAB is gradational and between 10 and 30 km in thickness. Amplitude variations and complexities in the LAB converted phases further indicate that the boundary marks a change in anisotropy most consistent with the LAB representing a sheared zone between the plate and underlying mantle.
more »
« less
- Award ID(s):
- 2041631
- PAR ID:
- 10431241
- Date Published:
- Journal Name:
- AGU Fall Meeting
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Geological processes in Southern Patagonia are affected by the Patagonian slab window, formed by the subduction of the Chile Ridge and subsequent northward migration of the Chile Triple Junction. Using shear wave splitting analysis, we observe strong splitting of up to 2.5 s with an E‐W fast direction just south of the triple junction and the edge of the subducting Nazca slab. This region of strong anisotropy is coincident with low uppermost mantle shear velocities and an absence of mantle lithosphere, indicating that the mantle flow occurs in a warm, low‐viscosity, 200–300 km wide shallow mantle channel just to the south of the Nazca slab. The region of flow corresponds to a volcanic gap caused by depleted mantle compositions and absence of slab‐derived water. In most of Patagonia to the south of this channel, splitting fast directions trend NE‐SW consistent with large‐scale asthenospheric flow.more » « less
-
Ruppert, Natalia A; Jadamec, Margarete A; Freymueller, Jeffrey T (Ed.)Long-lived continental magmatic arcs may migrate large (hundreds of kilometers) trench perpendicular distances as convergent margin configurations and slab geometry vary over time; however, many arc-magmatic belts are spatially localized over tens of millions of years.We document, by compiling published crystallization geochronology data for southern Alaska (6,485 total bedrock and single-grain detrital ages combined), that since ca. 100 Ma, arc magmatism has been localized along the Alaska Range suture zone (in places within a 10km × 5km swath) and at times over 500km inboard. However, since ca. 100 Ma, incoming subducting slab characteristics and convergent margin configurations varied greatly and include both normal oceanic plate and oceanic plateau subduction, plate vector changes, oroclinal bending and reconfiguration of trench shape, terrane accretion, long-distance terrane translation, and a Paleocene slab break off/slab window event. Therefore, it is inferred that inherited upper-plate lithospheric thickness and thermal variations must control in part the geometry of the subducting slab below a mobile southern Alaskan margin through hydrodynamic mantle wedge “suction” forces. Additionally, crustal thickness heterogeneity may focus magma ascent through melt ponding along Moho offsets, and upper-plate lithospheric-scale strike-slip faults may be acting as passive and active conduits for arc magmatism.more » « less
-
Abstract We use surface wave measurements to reveal anisotropy as a function of depth within the Juan de Fuca and Gorda plate system. Using a two‐plane wave method, we measure phase velocity and azimuthal anisotropy of fundamental mode Rayleigh waves, solving for anisotropic shear velocity. These surface wave measurements are jointly inverted with constraints fromSKSsplitting studies using a Markov chain approach. We show that the two data sets are consistent and present inversions that offer new constraints on the vertical distribution of strain beneath the plates and the processes at spreading centers. Anisotropy of the Juan de Fuca plate interior is strongest (~2.4%) in the low‐velocity zone between ~40‐ to 90‐km depth, with ENE direction driven by relative shear between plate motion and mantle return flow from the Cascadia subduction zone. In disagreement withPnmeasurements, weak (~1.1%) lithospheric anisotropy in Juan de Fuca is highly oblique to the expected ridge‐perpendicular direction, perhaps connoting complex intralithospheric fabrics associated with melt or off‐axis downwelling. In the Gorda microplate, strong shallow anisotropy (~1.9%) is consistent withPninversions and aligned with spreading and may be enhanced by edge‐driven internal strain. Weak anisotropy with ambiguous orientation in the low‐velocity zone can be explained by Gorda's youth and modest motion relative to the Pacific. Deeper (≥90 km) fabric appears controlled by regional flow fields modulated by the Farallon slab edge: anisotropy is strong (~1.8%) beneath Gorda, but absent beneath the Juan de Fuca, which is in the strain shadow of the slab.more » « less
-
Abstract The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism.more » « less
An official website of the United States government

