Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large systematic revisionary projects incorporating data for hundreds or thousands of taxa require an integrative approach, with a strong biodiversity-informatics core for efficient data management to facilitate research on the group. Our original biodiversity informatics platform, 3i (Internet-accessible Interactive Identification) combined a customized MS Access database backend with ASP-based web interfaces to support revisionary syntheses of several large genera of leafhopers (Hemiptera: Auchenorrhyncha: Cicadellidae). More recently, for our National Science Foundation sponsored project, “GoLife: Collaborative Research: Integrative genealogy, ecology and phenomics of deltocephaline leafhoppers (Hemiptera: Cicadellidae), and their microbial associates”, we selected the new open-source platform TaxonWorks as the cyberinfrastructure. In the scope of the project, the original “3i World Auchenorrhyncha Database” was imported into TaxonWorks. At the present time, TaxonWorks has many tools to automatically import nomenclature, citations, and specimen based collection data. At the time of the initial migration of the 3i database, many of those tools were still under development, and complexity of the data in the database required a custom migration script, which is still probably the most efficient solution for importing datasets with long development history. At the moment, the World Auchenorrhyncha Database comprehensively covers nomenclature of the group and includes data on 70 validmore »Free, publicly-accessible full text available August 23, 2023
-
The World Auchenorrhyncha Database comprises nomenclatural information for all known taxa in this suborder of Hemipteran insects (leafhoppers, planthoppers, treehoppers, cicadas, and spittle bugs). Of more than 110,000 included scientific names, 8,921 represent unique genus–group names (valid genera and subgenera as well as their synonyms). An attempt is being made to resolve the etymology of those names to clarify nomenclatural issues in this group of insects.
-
Abstract Recently discovered amber-preserved fossil Cicadellidae exhibit combinations of morphological traits not observed in the modern fauna and have the potential to shed new light on the evolution of this highly diverse family. To place the fossils explicitly within a phylogenetic context, representatives of five extinct genera from Cretaceous Myanmar amber, and one from Eocene Baltic amber were incorporated into a matrix comprising 229 discrete morphological characters and representatives of all modern subfamilies. Phylogenetic analyses yielded well resolved and largely congruent estimates that support the monophyly of most previously recognized cicadellid subfamilies and indicate that the treehoppers are derived from a lineage of Cicadellidae. Instability in the morphology-based phylogenies is mainly confined to deep internal splits that received low branch support in one or more analyses and also were not consistently resolved by recent phylogenomic analyses. Placement of fossil taxa is mostly stable across analyses. Three new Cretaceous leafhopper genera, Burmotettix gen. nov., Kachinella gen nov., and Viraktamathus gen. nov., consistently form a monophyletic group distinct from extant leafhopper subfamilies and are placed in Burmotettiginae subfam. nov. Extinct Cretaceous fossils previously placed in Ledrinae and Signoretiinae are recovered as sister to modern representatives of these groups. Eomegophthalmus Dietrich and Gonçalvesmore »
-
Biodiversity informatics workbenches and aggregators that make their data externally accessible via application programming interfaces (APIs) facilitate the development of customized applications that fit the needs of a diverse range of communities. In the past, the technical skills required to host web-facing applications placed constraints on many researchers: they either needed to find technical help, or expand their own skills. These limits are now significantly reduced when free or low-cost web-site hosting is combined with small, well-documented applications that require minimal configuration to setup. We illustrate two applications that take advantage of this approach: an interactive key engine (presently named "distinguish") and TaxonPages, a taxon page service application. Both applications make use of TaxonWorks' API. We discuss the limits, e.g., the user must be online to access the data behind the application, and advantages of this approach, e.g., the application server can be served locally, on the users' own computer, and the underlying data are all accessible in more technical formats.Free, publicly-accessible full text available September 7, 2023
-
Free, publicly-accessible full text available July 1, 2023
-
TaxonWorks is an integrated web-based application for practicing taxonomists and biodiversity specialists. It is focused on promoting collaboration between researchers and developers. TaxonWorks has a modular structure that enables various components of the application to target specific needs and requirements of different groups of users. Specific areas of interest may include nomenclature-related tasks (Yoder and Dmitriev 2021) designed to help assemble and validate scientific name checklists of a target group of organisms; and collection management tasks, including interfaces to create, filter, and edit collecting events, collection objects, and loans. This presentation focuses on matrix-related tools integrated into TaxonWorks. A matrix, which could either be used for phylogenetic analysis or to build an identification key, is structured as a table where columns represent numerous characters that could be used to describe a set of entities, taxa or specimens (presented as rows of the table). Each cell of the table may contain observations for specific character/entity combinations. TaxonWorks does not generate a table for each a particular matrix—all observations are stored as graphs. This structure allows building of a matrix of an unlimited size as well as reuse of individual observations in multiple matrices. For matrix columns, TaxonWorks supports a variety ofmore »
-
We are now over four decades into digitally managing the names of Earth's species. As the number of federating (i.e., software that brings together previously disparate projects under a common infrastructure, for example TaxonWorks) and aggregating (e.g., International Plant Name Index, Catalog of Life (CoL)) efforts increase, there remains an unmet need for both the migration forward of old data, and for the production of new, precise and comprehensive nomenclatural catalogs. Given this context, we provide an overview of how TaxonWorks seeks to contribute to this effort, and where it might evolve in the future. In TaxonWorks, when we talk about governed names and relationships, we mean it in the sense of existing international codes of nomenclature (e.g., the International Code of Zoological Nomenclature (ICZN)). More technically, nomenclature is defined as a set of objective assertions that describe the relationships between the names given to biological taxa and the rules that determine how those names are governed. It is critical to note that this is not the same thing as the relationship between a name and a biological entity, but rather nomenclature in TaxonWorks represents the details of the (governed) relationships between names. Rather than thinking of nomenclature as changingmore »
-
The leafhopper genus Homa Distant is revised. Four new species, H. osificata Xu, Dietrich & Qin sp. nov., H. oretinia Xu, Dietrich & Qin sp. nov., H. asilata Xu, Dietrich & Qin sp. nov., and H. algulata Xu, Dietrich & Qin sp. nov., are described from Thailand. H. haematoptilus (Kirkaldy) is redescribed based on specimens from the Oriental Region. All included species are illustrated and a key is provided to separate species for which males are known.
-
Rovnoxestus rasnitsyni gen. & sp. nov. is described from Eocene Rovno amber based on an adult female and fifth-instar nymph collected at a recently discovered locality at Perebrody, Rovno Province, Ukraine. The new fossil taxon is tentatively placed in Aphrodinae and resembles Xestocephalites Dietrich & Gonçalves from Eocene Baltic amber but has the hind femur macrosetal formula 2+2+1 and hind tarsomere I in both nymph and adult with an elongated inner preapical seta. This is the first species of Eocene leafhopper for which both the adult and nymph are described in detail.
-
In 2009, Jones and Deitz published a tribe-level taxonomic revision and reclassification of the cryptic, arboreal leafhopper subfamily Ledrinae Kirschbaum, 1868 (Hemiptera: Cicadellidae), based on cladistic analyses of 235 morphological features for 75 cicadellid species. Their evolutionary reconstructions found strong node support for a monophyletic ingroup comprising five lineages—each morphologically and geographically cohesive—and also identified numerous traditionally placed taxa (sensu Oman et al 1990) that did not belong. In light of the robustness of their results, the authors recognized the five independent ingroup clades as tribes of Ledrinae, and described three of these as new.