skip to main content

Search for: All records

Creators/Authors contains: "Dobrowski, Solomon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change is anticipated to increase the frequency and intensity of droughts, with major impacts to ecosystems globally. Broad-scale assessments of vegetation responses to drought are needed to anticipate, manage, and potentially mitigate climate-change effects on ecosystems. We quantified the drought sensitivity of vegetation in the Pacific Northwest, USA, as the percent reduction in vegetation greenness under droughts relative to baseline moisture conditions. At a regional scale, shrub-steppe ecosystems—with drier climates and lower biomass—showed greater drought sensitivity than conifer forests. However, variability in drought sensitivity was considerable within biomes and within ecosystems and was mediated by landscape topography, climate, and soil characteristics. Drought sensitivity was generally greater in areas with higher elevation, drier climate, and greater soil bulk density. Ecosystems with high drought sensitivity included dry forests along ecotones to shrublands, Rocky Mountain subalpine forests, and cold upland sagebrush communities. In forests, valley bottoms and areas with low soil bulk density and high soil available water capacity showed reduced drought sensitivity, suggesting their potential as drought refugia. These regional-scale drought-sensitivity patterns discerned from remote sensing can complement plot-scale studies of plant physiological responses to drought to help inform climate-adaptation planning as drought conditions intensify.
  2. Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north–south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire,more »as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.« less
  3. null (Ed.)
    We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great – can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? and (10) Is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keepmore »pace with changing climatic and wildfire regimes and declining forest successional heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.« less
  4. Abstract

    Changes in individual climate variables have been widely documented over the past century. However, assessments that consider changes in the collective interaction amongst multiple climate variables are relevant for understanding climate impacts on ecological and human systems yet are less well documented than univariate changes. We calculate annual multivariate climate departures during 1958–2017 relative to a baseline 1958–1987 period that account for covariance among four variables important to Earth’s biota and associated systems: annual climatic water deficit, annual evapotranspiration, average minimum temperature of the coldest month, and average maximum temperature of the warmest month. Results show positive trends in multivariate climate departures that were nearly three times that of univariate climate departures across global lands. Annual multivariate climate departures exceeded two standard deviations over the past decade for approximately 30% of global lands. Positive trends in climate departures over the last six decades were found to be primarily the result of changes in mean climate conditions consistent with the modeled effects of anthropogenic climate change rather than changes in variability. These results highlight the increasing novelty of annual climatic conditions viewed through a multivariate lens and suggest that changes in multivariate climate departures have generally outpaced univariate departures in recent decades.

  5. Large-scale global reforestation goals have been proposed to help mitigate climate change and provide other ecosystem services. To explore reforestation potential in the United States, we used GIS analyses, surveys of nursery managers and foresters, and literature synthesis to assess the opportunities and challenges associated with meeting proposed reforestation goals. We considered a scenario where 26 million hectares (64 million acres) of natural and agricultural lands are reforested by 2040 with 30 billion trees at an estimated cost of $33 ($24–$53) billion USD. Cost per hectare will vary by region, site conditions, and other factors. This scenario would require increasing the number of tree seedlings produced each year by 1.7 billion, a 2.3-fold increase over current nursery production levels. Additional investment (not included in the reforestation cost estimate) will be needed to expand capacity for seed collection, seedling production, workforce development, and improvements in pre- and post-planting practices. Achieving this scenario will require public support for investing in these activities and incentives for landowners.