Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
In order to simulate virtual agents in the replica of a real facility across a long time span, a crowd simulation engine needs a list of agent arrival and destination locations and times that reflect those seen in the actual facility. Working together with a major metropolitan transportation authority, we propose a specification that can be used to procedurally generate this information. This specification is both uniquely compact and expressive—compact enough to mirror the mental model of building managers and expressive enough to handle the wide variety of crowds seen in real urban environments. We also propose a procedural algorithm for generating tens of thousands of high-level agent paths from this specification. This algorithm allows our specification to be used with traditional crowd simulation obstacle avoidance algorithms while still maintaining the realism required for the complex, real-world simulations of a transit facility. Our evaluation with industry professionals shows that our approach is intuitive and provides controls at the right level of detail to be used in large facilities (200,000+ people/day).more » « less
-
We present a framework for deformable object manipulation that interleaves planning and control, enabling complex manipulation tasks without relying on high-fidelity modeling or simulation. The key question we address is when should we use planning and when should we use control to achieve the task? Planners are designed to find paths through complex configuration spaces, but for highly underactuated systems, such as deformable objects, achieving a specific configuration is very difficult even with high-fidelity models. Conversely, controllers can be designed to achieve specific configurations, but they can be trapped in undesirable local minima owing to obstacles. Our approach consists of three components: (1) a global motion planner to generate gross motion of the deformable object; (2) a local controller for refinement of the configuration of the deformable object; and (3) a novel deadlock prediction algorithm to determine when to use planning versus control. By separating planning from control we are able to use different representations of the deformable object, reducing overall complexity and enabling efficient computation of motion. We provide a detailed proof of probabilistic completeness for our planner, which is valid despite the fact that our system is underactuated and we do not have a steering function. We then demonstrate that our framework is able to successfully perform several manipulation tasks with rope and cloth in simulation, which cannot be performed using either our controller or planner alone. These experiments suggest that our planner can generate paths efficiently, taking under a second on average to find a feasible path in three out of four scenarios. We also show that our framework is effective on a 16-degree-of-freedom physical robot, where reachability and dual-arm constraints make the planning more difficult.more » « less