Predicting the crowd behavior in complex environments is a key requirement for crowd and disaster management, architectural design, and urban planning. Given a crowd’s immediate state, current approaches must be successively repeated over multiple time-steps for long-term predictions, leading to compute expensive and error-prone results. However, most applications require the ability to accurately predict hundreds of possible simulation outcomes (e.g., under different environment and crowd situations) at real-time rates, for which these approaches are prohibitively expensive. We propose the first deep framework to instantly predict the long-term flow of crowds in arbitrarily large, realistic environments. Central to our approach are a novel representation CAGE, which efficiently encodes crowd scenarios into compact, fixed-size representations that losslessly represent the environment, and a modified SegNet architecture for instant long-term crowd flow prediction. We conduct comprehensive experiments on novel synthetic and real datasets. Our results indicate that our approach is able to capture the essence of real crowd movement over very long time periods, while generalizing to never-before-seen environments and crowd contexts. The associated Supplementary Material, models, and datasets are available at github.com/SSSohn/LTCF.
more »
« less
Generation of crowd arrival and destination locations/times in complex transit facilities
In order to simulate virtual agents in the replica of a real facility across a long time span, a crowd simulation engine needs a list of agent arrival and destination locations and times that reflect those seen in the actual facility. Working together with a major metropolitan transportation authority, we propose a specification that can be used to procedurally generate this information. This specification is both uniquely compact and expressive—compact enough to mirror the mental model of building managers and expressive enough to handle the wide variety of crowds seen in real urban environments. We also propose a procedural algorithm for generating tens of thousands of high-level agent paths from this specification. This algorithm allows our specification to be used with traditional crowd simulation obstacle avoidance algorithms while still maintaining the realism required for the complex, real-world simulations of a transit facility. Our evaluation with industry professionals shows that our approach is intuitive and provides controls at the right level of detail to be used in large facilities (200,000+ people/day).
more »
« less
- PAR ID:
- 10128080
- Date Published:
- Journal Name:
- The Visual Computer
- ISSN:
- 0178-2789
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Relevance to proposal: This project evaluates the generalizability of real and synthetic training datasets which can be used to train model-free techniques for multi-agent applications. We evaluate different methods of generating training corpora and machine learning techniques including Behavior Cloning and Generative Adversarial Imitation Learning. Our results indicate that the utility-guided selection of representative scenarios to generate synthetic data can have significant improvements on model performance. Paper abstract: Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds.more » « less
-
null (Ed.)We introduce a new inverse modeling method to interactively design crowd animations. Few works focus on providing succinct high-level and large-scale crowd motion modeling. Our methodology is to read in real or virtual agent trajectory data and automatically infer a set of parameterized crowd motion models. Then, components of the motion models can be mixed, matched, and altered enabling rapidly producing new crowd motions. Our results show novel animations using real-world data, using synthetic data, and imitating real-world scenarios. Moreover, by combining our method with our interactive crowd trajectory sketching tool, we can create complex spatio-temporal crowd animations in about a minute.more » « less
-
In recent years, the field of crowd simulation has experienced significant advancements, attributed in part to the improvement of hardware performance, coupled with a notable emphasis on agent-based characteristics. Agent-based simulations stand out as the preferred methodology when researchers seek to model agents with unique behavioral traits and purpose-driven actions, a crucial aspect for simulating diverse and realistic crowd movements. This survey adopts a systematic approach, meticulously delving into the array of factors vital for simulating a heterogeneous microscopic crowd. The emphasis is placed on scrutinizing low-level behavioral details and individual features of virtual agents to capture a nuanced understanding of their interactions. The survey is based on studies published in reputable peer-reviewed journals and conferences. The primary aim of this survey is to present the diverse advancements in the realm of agent-based crowd simulations, with a specific emphasis on the various aspects of agent behavior that researchers take into account when developing crowd simulation models. Additionally, the survey suggests future research directions with the objective of developing new applications that focus on achieving more realistic and efficient crowd simulations.more » « less
-
Offline safe reinforcement learning (RL) aims to train a constraint satisfaction policy from a fixed dataset. Current state-of-the-art approaches are based on supervised learning with a conditioned policy. However, these approaches fall short in real-world applications that involve complex tasks with rich temporal and logical structures. In this paper, we propose temporal logic Specification-conditioned Decision Transformer (SDT), a novel framework that harnesses the expressive power of signal temporal logic (STL) to specify complex temporal rules that an agent should follow and the sequential modeling capability of Decision Transformer (DT). Empirical evaluations on the DSRL benchmarks demonstrate the better capacity of SDT in learning safe and high-reward policies compared with existing approaches. In addition, SDT shows good alignment with respect to different desired degrees of satisfaction of the STL specification that it is conditioned on.more » « less
An official website of the United States government

