Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, 𝑵 − 𝟏 security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%.more » « lessFree, publicly-accessible full text available March 1, 2025
-
Multiple line outages that occur together show a variety of spatial patterns in the power transmission network. Some of these spatial patterns form network contingency motifs, which we define as the patterns of multiple outages that occur much more frequently than multiple outages chosen randomly from the network. We show that choosing N-k contingencies from these commonly occurring contingency motifs accounts for most of the probability of multiple initiating line outages. This result is demonstrated using historical outage data for two transmission systems. It enables N-k contingency lists that are much more efficient in accounting for the likely multiple initiating outages than exhaustive listing or random selection. The N-k contingency lists constructed from motifs can improve risk estimation in cascading outage simulations and help to confirm utility contingency selection.more » « less
-
This paper develops a probabilistic earthquake risk assessment for the electric power transmis- sion system in the City of Los Angeles. Via a dc load flow analysis of a suite of damage scenarios that reflect the seismic risk in Los Angeles, we develop a probabilistic representation for load shed during the restoration process. This suite of damage scenarios and their associated annual probabilities of occurrence are developed from 351 risk-adjusted earthquake scenarios using ground motion that collectively represent the seismic risk in Los Angeles at the census tract level. For each of these 351 earthquake scenarios, 12 damage scenarios are developed that form a probabilistic representation of the consequences of the earthquake scenario on the components of the transmission system. This analysis reveals that substation damage is the key driver of load shed. Damage to generators has a substantial but still secondary impact, and damage to transmission lines has significantly less impact. We identify the census tracts that are substantially more vulnerable to power transmission outages during the restoration process. Further, we explore the impact of forecasted increases in penetration of residential storage paired with rooftop solar. The deployment of storage paired with rooftop solar is represented at the census tract level and is assumed to be able to generate and store power for residential demand during the restoration process. The deployment of storage paired with rooftop solar reduces the load shed during the restoration process, but the distribution of this benefit is correlated with household income and whether the dwelling is owned or rented.more » « less
-
The North American Electric Reliability Corporation (NERC) tracks the restoration of the North American transmission system after events which test the grid resilience and reliability. Quantifying and analyzing these historical events is a foundation for studying and maintaining resilience. After showing that the largest recent events are dominated by extreme weather events, the paper analyzes these events by extracting the restore process for each event and defining, calculating, and discussing various metrics that quantify the restoration. The metrics include a duration metric of time to substantial restoration. In 2021, Hurricane Ida was the largest resilience event in the North American system. A case study of Hurricane Ida analyzes the generator outages and restoration as well as the transmission system outages and restoration.more » « less
-
It is well known that interdependence between electric power systems and other infrastructures can impact energy reliability and resilience, but it is less clear which particular interactions have the most impact. There is a need for methods that can rank the relative importance of these interdependencies. This paper describes a new tool for measuring resilience and ranking interactions. This tool, known as Computing Resilience of Infrastructure Simulation Platform (CRISP), samples from historical utility data to avoid many of the assumptions required for simulation-based approaches to resilience quantification. This paper applies CRISP to rank the relative importance of four types of interdependence (natural gas supply, communication systems, nuclear generation recovery, and a generic restoration delay) in two test cases: the IEEE 39-bus test case and a 6394-bus model of the New England/New York power grid. The results confirm industry studies suggesting that a loss of the natural gas system is the most severe specific interdependence faced by this region.more » « less
-
We automatically extract resilience events and novel outage and restore processes from standard transmission utility detailed outage data. This new processing is applied to the outage data collected in NERC’s Transmission Availability Data System to introduce and analyze statistics that quantify resilience of the transmission system against extreme weather events. These metrics (such as outage rate and duration, number of elements outaged, rated capacity outaged, restore duration, maximum simultaneous outages, and element-days lost) are calculated for all large weather-related events on the North American transmission system from 2015 to 2020 and then by extreme weather type that caused them such as hurricanes, tornadoes, and winter storms. Finally, we study how performance of the system changed with respect to the resilience metrics by season and year.more » « less