skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dodik, Ana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less
  2. We propose a variational technique to optimize for generalized barycentric coordinates that offers additional control compared to existing models. Prior work represents barycentric coordinates using meshes or closed-form formulae, limiting the choice of objective function. In contrast, we directly parameterize the continuous function mapping any coordinate in a polytope’s interior to its barycentric coordinates using a neural field. Enabled by our theoretical characterization of barycentric coordinates, we construct neural fields parameterizing valid coordinates. We demonstrate flexibility using various objective functions, validate our algorithm, and present several applications. 
    more » « less