- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Dodis, Yevgeniy and (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work we challenge the common misconception that information-theoretic (IT) privacy is too impractical to be used in the real-world: we propose to build simple and reusable IT-encryption solutions whose only efficiency penalty (compared to computationally-secure schemes) comes from a large secret key size, which is often a rather minor inconvenience, as storage is cheap. In particular, our solutions are stateless and locally computable at the optimal rate, meaning that honest parties do not maintain state and read only (optimally) small portions of their large keys with every use. Moreover, we also propose a novel architecture for outsourcing the storage of these long keys to a network of semi-trusted servers, trading the need to store large secrets with the assumption that it is hard to simultaneously compromise too many publicly accessible ad-hoc servers. Our architecture supports everlasting privacy and post-application security of the derived one-time keys, resolving two major limitations of a related model for outsourcing key storage, called bounded storage model. Both of these results come from nearly optimal constructions of so called doubly-affine extractors: locally-computable, seeded extractors Ext(X,S) which are linear functions of X (for any fixed seed S), and protect against bounded affine leakage on X. This holds unconditionally, even if (a) affine leakage may adaptively depend on the extracted key R = Ext(X,S); and (b) the seed S is only computationally secure. Neither of these properties are possible with general-leakage extractors.more » « less
An official website of the United States government

Full Text Available