- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dohmen, Taylor (2)
-
Trivedi, Ashutosh (2)
-
Bak, Stanley (1)
-
Perez, Mateo (1)
-
Somenzi, Fabio (1)
-
Subramani, K (1)
-
Velasquez, Alvaro (1)
-
Wojciechowski, Piotr (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Ganesh, Vijay (1)
-
Gurfinkel, Arie (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Efficient verification algorithms for neural networks often depend on various abstract domains such as intervals, zonotopes, and linear star sets. The choice of the abstract domain presents an expressiveness vs. scalability trade-off: simpler domains are less precise but yield faster algorithms. This paper investigates the hexatope and octatope abstract domains in the context of neural net verification. Hexatopes are affine transformations of higher-dimensional hexagons, defined by difference constraint systems, and octatopes are affine transformations of higher-dimensional octagons, defined by unit-two-variable-per-inequality constraint systems. These domains generalize the idea of zonotopes which can be viewed as affine transformations of hypercubes. On the other hand, they can be considered as a restriction of linear star sets, which are affine transformations of arbitrary H-Polytopes. This distinction places hexatopes and octatopes firmly between zonotopes and linear star sets in their expressive power, but what about the efficiency of decision procedures? An important analysis problem for neural networks is the exact range computation problem that asks to compute the exact set of possible outputs given a set of possible inputs. For this, three computational procedures are needed: (1) optimization of a linear cost function; (2) affine mapping; and (3) over-approximating the intersection with a half-space. While zonotopes allow an efficient solution for these approaches, star sets solves these procedures via linear programming. We show that these operations are faster for hexatopes and octatopes than they are for the more expressive linear star sets by reducing the linear optimization problem over these domains to the minimum cost network flow, which can be solved in strongly polynomial time using the Out-of-Kilter algorithm. Evaluating exact range computation on several ACAS Xu neural network benchmarks, we find that hexatopes and octatopes show promise as a practical abstract domain for neural network verification.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Dohmen, Taylor; Perez, Mateo; Somenzi, Fabio; Trivedi, Ashutosh (, Springer, Cham)Gurfinkel, Arie; Ganesh, Vijay (Ed.)In reinforcement learning, an agent incrementally refines a behavioral policy through a series of episodic interactions with its environment. This process can be characterized as explicit reinforcement learning, as it deals with explicit states and concrete transitions. Building upon the concept of symbolic model checking, we propose a symbolic variant of reinforcement learning, in which sets of states are represented through predicates and transitions are represented by predicate transformers. Drawing inspiration from regular model checking, we choose regular languages over the states as our predicates, and rational transductions as predicate transformations. We refer to this framework as regular reinforcement learning, and study its utility as a symbolic approach to reinforcement learning. Theoretically, we establish results around decidability, approximability, and efficient learnability in the context of regular reinforcement learning. Towards practical applications, we develop a deep regular reinforcement learning algorithm, enabled by the use of graph neural networks. We showcase the applicability and effectiveness of (deep) regular reinforcement learning through empirical evaluation on a diverse set of case studies.more » « less
An official website of the United States government

Full Text Available