skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dolby, Greer_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The genomic characteristics of adaptively radiated groups could contribute to their high species number and ecological disparity, by increasing their evolutionary potential. Here, we explored the genomic variation of Anolis lizards, focusing on three species with distinct phenotypes: A. auratus, one of the species with the longest tail; A. frenatus, one of the largest species; and A. carolinensis, one of the species that inhabits the coldest environments. We assembled and annotated two new chromosome-level reference genomes for A. auratus and A. frenatus, and compared them with the available genomes of A. carolinensis and A. sagrei. We evaluated the presence of structural rearrangements, quantified the density of repeat elements, and identified potential signatures of positive selection in coding and regulatory regions. We detected substantial rearrangements in scaffolds 1, 2 and 3 of A. frenatus different from the other species, in which the rearrangement breakpoints corresponded to hotspots of developmental genes. Further, we detected an accumulation of repeats around key developmental genes in anoles and phrynosomatid outgroups. Finally, coding sequences and regulatory regions of genes relevant to development and physiology showed variation that could be associated with the unique phenotypes of the analyzed species. Our results show examples of the hierarchical genomic variation within anoles, that could provide the substrate that promoted phenotypic disparity and contributed to their adaptive radiation. 
    more » « less
  2. Abstract AimTo review the histories of the Colorado River and North American monsoon system to ascertain their effects on the genetic divergence of desert‐adapted animals. LocationLower Colorado River region, including Mojave and Sonoran deserts, United States. MethodsWe synthesized recent geological literature to summarize initiation phases of lower Colorado River evolution, their discrepancies, and potential for post‐vicariance dispersal of animals across the river. We simulated data under geological models and performed a meta‐analysis of published and unpublished genetic data including population diversity metrics, relatedness and historical migration rates to assess alternative divergence hypotheses. ResultsThe two models for arrival of the Colorado River into the Gulf of California impose east‐west divergence ages of 5.3 and 4.8 Ma, respectively. We found quantifiable river‐associated differentiation in the lower Colorado River region in reptiles, arachnids and mammals relative to flying insects. However, topological statistics, historical migration rates and cross‐river extralimital populations suggest that the river should be considered a leaky barrier that filters, rather than prevents, gene flow. Most markers violated neutrality tests. Differential adaptation to monsoon‐based precipitation differences may contribute to divergence between Mojave and Sonoran populations and should be tested. Main ConclusionsRivers are dynamic features that can both limit and facilitate gene flow through time, the impacts of which are mitigated by species‐specific life history and dispersal traits. The Southwest is a geo‐climatically complex region with the potential to produce pseudocongruent patterns of genetic divergence, offering a good setting to evaluate intermediate levels of geological‐biological (geobiological) complexity. 
    more » « less