Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Physical Unclonable Functions (PUFs) leverage manufacturing process imperfections that cause propagation delay discrepancies for the signals traveling along these paths. While PUFs can be used for device authentication and chip-specific key generation, strong PUFs have been shown to be vulnerable to machine learning modeling attacks. Although there is an impression that combinational circuits must be designed without any loops, cyclic combinational circuits have been shown to increase design security against hardware intellectual property theft. In this paper, we introduce feedback signals into traditional delay-based PUF designs such as arbiter PUF, ring oscillator PUF, and butterfly PUF to give them a wider range of possible output behaviors and thus an edge against modeling attacks. Based on our analysis, cyclic PUFs produce responses that can be binary, steady-state, oscillating, or pseudo-random under fixed challenges. The proposed cyclic PUFs are implemented in field programmable gate arrays, and their power and area overhead, in addition to functional metrics, are reported compared with their traditional counterparts. The security gain of the proposed cyclic PUFs is also shown against state-of-the-art attacks.more » « less
-
Consecutive circularly-polarized optical pulses generate and rotate electron spin polarization through optical orientation and the optical Stark effect. We perform time- and magnetic-field-dependent optical pump-probe measurements on gallium arsenide and observe a variable Overhauser field growth that depends on the external magnetic field and laser wavelength. We show that the time dependence of the nuclear spin polarization can be attributed to the time-averaged electron spin polarization produced along the external magnetic field direction.more » « less
-
An experimental and computational optical pump-probe model is constructed, which utilizes two ultrafast pump pulses within the repetition period of a mode-locked laser to generate electron spin polarization. This report focuses on the effects of resonant spin amplification induced by an infinite train of the two-pump pulses. The first pump pulse is used to generate ordinary resonant spin amplification spectra, while the second pump pulse is used to manipulate the generated spectra. This model gives control of the accumulation of spin polarized electrons along a magnetic field by selecting the temporal separation of the two-pump pulses. The computational model accurately predicts and agrees with the experimental results, which shows manipulation of resonant spin peaks that are no longer entirely dependent on the external magnetic field. This two-pump model and the associated manipulations of resonant spin peaks can be used as a platform to construct and conceptualize resonant spin amplification-based optospintronic devices and applications.more » « less
An official website of the United States government
