- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
DeVries, Tim (2)
-
Doney, Scott_C (2)
-
Gruber, Nicolas (2)
-
Hauck, Judith (2)
-
Bopp, Laurent (1)
-
Carroll, Dustin (1)
-
Carter, Brendan (1)
-
Cavan, Emma (1)
-
Chau, Thi‐Tuyet‐Trang (1)
-
Gehlen, Marion (1)
-
Gloege, Lucas (1)
-
Gregor, Luke (1)
-
Henson, Stephanie (1)
-
Henson, Stephanie_A (1)
-
Iida, Yosuke (1)
-
Ilyina, Tatiana (1)
-
Kim, Ji_Hyun (1)
-
Landschützer, Peter (1)
-
Le_Quéré, Corinne (1)
-
Mitchell, Kayla_A (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study characterized ocean biological carbon pump metrics in the second iteration of the REgional Carbon Cycle Assessment and Processes (RECCAP2) project. The analysis here focused on comparisons of global and biome‐scale regional patterns in particulate organic carbon (POC) production and sinking flux from the RECCAP2 ocean biogeochemical model ensemble against observational products derived from satellite remote sensing, sediment traps, and geochemical methods. There was generally good model‐data agreement in mean large‐scale spatial patterns, but with substantial spread across the model ensemble and observational products. The global‐integrated, model ensemble‐mean export production, taken as the sinking POC flux at 100 m (6.08 ± 1.17 Pg C yr−1), and export ratio defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the lower end of observational estimates. Comparison with observational constraints also suggested that the model ensemble may have underestimated regional biological CO2drawdown and air‐sea CO2flux in high productivity regions. Reasonable model‐data agreement was found for global‐integrated, ensemble‐mean sinking POC flux into the deep ocean at 1,000 m (0.65 ± 0.24 Pg C yr−1) and the transfer efficiency defined as flux at 1,000 m divided by flux at 100 m (0.122 ± 0.041), with both variables exhibiting considerable regional variability. The RECCAP2 analysis presents standard ocean biological carbon pump metrics for assessing biogeochemical model skill, metrics that are crucial for further modeling efforts to resolve remaining uncertainties involving system‐level interactions between ocean physics and biogeochemistry.more » « less
-
DeVries, Tim; Yamamoto, Kana; Wanninkhof, Rik; Gruber, Nicolas; Hauck, Judith; Müller, Jens_Daniel; Bopp, Laurent; Carroll, Dustin; Carter, Brendan; Chau, Thi‐Tuyet‐Trang; et al (, Global Biogeochemical Cycles)Abstract This contribution to the RECCAP2 (REgional Carbon Cycle Assessment and Processes) assessment analyzes the processes that determine the global ocean carbon sink, and its trends and variability over the period 1985–2018, using a combination of models and observation‐based products. The mean sea‐air CO2flux from 1985 to 2018 is −1.6 ± 0.2 PgC yr−1based on an ensemble of reconstructions of the history of sea surface pCO2(pCO2products). Models indicate that the dominant component of this flux is the net oceanic uptake of anthropogenic CO2, which is estimated at −2.1 ± 0.3 PgC yr−1by an ensemble of ocean biogeochemical models, and −2.4 ± 0.1 PgC yr−1by two ocean circulation inverse models. The ocean also degasses about 0.65 ± 0.3 PgC yr−1of terrestrially derived CO2, but this process is not fully resolved by any of the models used here. From 2001 to 2018, the pCO2products reconstruct a trend in the ocean carbon sink of −0.61 ± 0.12 PgC yr−1 decade−1, while biogeochemical models and inverse models diagnose an anthropogenic CO2‐driven trend of −0.34 ± 0.06 and −0.41 ± 0.03 PgC yr−1 decade−1, respectively. This implies a climate‐forced acceleration of the ocean carbon sink in recent decades, but there are still large uncertainties on the magnitude and cause of this trend. The interannual to decadal variability of the global carbon sink is mainly driven by climate variability, with the climate‐driven variability exceeding the CO2‐forced variability by 2–3 times. These results suggest that anthropogenic CO2dominates the ocean CO2sink, while climate‐driven variability is potentially large but highly uncertain and not consistently captured across different methods.more » « less