skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dorfman, Konstantin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Optical interferometry has been a long-standing setup for characterization of quantum states of light. Both linear and the nonlinear interferences can provide information regarding the light statistics and underlying detail of the light-matter interactions. Here we demonstrate how interferometric detection of nonlinear spectroscopic signals may be used to improve the measurement accuracy of matter susceptibilities. Light-matter interactions change the photon statistics of quantum light, which are encoded in the field correlation functions. Application is made to the Hong-Ou-Mandel two-photon interferometer that reveals entanglement-enhanced resolution that can be achieved with existing optical technology. 
    more » « less
  2. null (Ed.)
  3. Four-wave mixing (FWM) of optical fields has been extensively used in quantum information processing, sensing, and memories. It also forms a basis for nonlinear spectroscopies such as transient grating, stimulated Raman, and photon echo where phase matching is used to select desired components of the third-order response of matter. Here we report an experimental study of the two-dimensional quantum noise intensity difference spectra of a pair of squeezed beams generated by FWM in hot Rb vapor. The measurement reveals details of the χ ( 3 ) susceptibility dressed by the strong pump field which induces an AC Stark shift, with higher spectral resolution compared to classical measurements of probe and conjugate beam intensities. We demonstrate how quantum correlations of squeezed light can be utilized as a spectroscopic tool which unlike their classical counterparts are robust to external noise. 
    more » « less
  4. null (Ed.)
  5. We propose a quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as ∝ I p 1 / 2 , where I p is the source intensity, compared with ∝ I p of classical diffraction. This makes imaging with weak fields possible, providing high signal-to-noise ratio, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions. 
    more » « less