skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum phase-sensitive diffraction and imaging using entangled photons
We propose a quantum diffraction imaging technique whereby one photon of an entangled pair is diffracted off a sample and detected in coincidence with its twin. The image is obtained by scanning the photon that did not interact with matter. We show that when a dynamical quantum system interacts with an external field, the phase information is imprinted in the state of the field in a detectable way. The contribution to the signal from photons that interact with the sample scales as ∝ I p 1 / 2 , where I p is the source intensity, compared with ∝ I p of classical diffraction. This makes imaging with weak fields possible, providing high signal-to-noise ratio, avoiding damage to delicate samples. A Schmidt decomposition of the state of the field can be used for image enhancement by reweighting the Schmidt modes contributions.  more » « less
Award ID(s):
1663822
PAR ID:
10174849
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
ISSN:
0027-8424
Page Range / eLocation ID:
201904839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Diffraction-limited optical imaging through scattering media has the potential to transform many applications such as airborne and space-based imaging (through the atmosphere), bioimaging (through skin and human tissue), and fiber-based imaging (through fiber bundles). Existing wavefront shaping methods can image through scattering media and other obscurants by optically correcting wavefront aberrations using high-resolution spatial light modulators—but these methods generally require (i) guidestars, (ii) controlled illumination, (iii) point scanning, and/or (iv) statics scenes and aberrations. We propose neural wavefront shaping (NeuWS), a scanning-free wavefront shaping technique that integrates maximum likelihood estimation, measurement modulation, and neural signal representations to reconstruct diffraction-limited images through strong static and dynamic scattering media without guidestars, sparse targets, controlled illumination, nor specialized image sensors. We experimentally demonstrate guidestar-free, wide field-of-view, high-resolution, diffraction-limited imaging of extended, nonsparse, and static/dynamic scenes captured through static/dynamic aberrations. 
    more » « less
  2. We present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong–Ou–Mandel apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system. 
    more » « less
  3. The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum information science, however, this has remained a considerable challenge spanning several decades. Here, we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon level probe pulse (1.5μs) triggered by a simultaneously propagating few-photon-level signal field. This process is mediated by Rb87 vapor in a double-Λ atomic configuration. We use homodyne tomography to obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is a key milestone toward developing quantum logic and nondemolition photon detection using schemes such as coherent photon conversion. 
    more » « less
  4. We present a reflection-mode, polarimetric imaging system that can achieve 45µm sample resolution and measure the co-polarized and cross-polarized reflected field components individually over the 750GHz1.1THz band. The system is based on a vector network analyzer (VNA) in conjunction with frequency extenders and illuminates the sample under test through a high-resistivity Silicon (HRSi) lens to achieve image resolution 3.42-times better than the free-space diffraction limit. The two ports of the VNA are used to capture the co-polarized and cross-polarized images of the same sample. A simple quasi-optical setup is used to isolate and direct the cross-polarized reflected signal without significantly degrading the copolarized signal. The utility of the proposed system is demonstrated using biomedical samples in form of formalin-fixed paraffin-embedded (FFPE) tissues. 
    more » « less
  5. Quantum ghost imaging (QGI) leverages correlations between entangled photon pairs to reconstruct an image using light that has never physically interacted with an object. Despite extensive research interest, this technique has long been hindered by slow acquisition speeds, due to the use of raster-scanned detectors or the slow response of intensified cameras. Here, we utilize a single-photon-sensitive time-stamping camera to perform QGI at ultra-low-light levels with rapid data acquisition and processing times, achieving high-resolution and high-contrast images in under 1 min. Our work addresses the trade-off between image quality, optical power, data acquisition time, and data processing time in QGI, paving the way for practical applications in biomedical and quantum-secured imaging. 
    more » « less