- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Konkle, Talia (2)
-
Alvarez, George A (1)
-
Doshi, Fenil R (1)
-
Doshi, Fenil R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep neural network models provide a powerful experimental platform for exploring core mechanisms underlying human visual perception, such as perceptual grouping and contour integration—the process of linking local edge elements to arrive at a unified perceptual representation of a complete contour. Here, we demonstrate that feedforward convolutional neural networks (CNNs) fine-tuned on contour detection show this human-like capacity, but without relying on mechanisms proposed in prior work, such as lateral connections, recurrence, or top-down feedback. We identified two key properties needed for ImageNet pre-trained, feed-forward models to yield human-like contour integration: first, progressively increasing receptive field structure served as a critical architectural motif to support this capacity; and second, biased fine-tuning for contour-detection specifically for gradual curves (~20 degrees) resulted in human-like sensitivity to curvature. We further demonstrate that fine-tuning ImageNet pretrained models uncovers other hidden human-like capacities in feed-forward networks, including uncrowding (reduced interference from distractors as the number of distractors increases), which is considered a signature of human perceptual grouping. Thus, taken together these results provide a computational existence proof that purely feedforward hierarchical computations are capable of implementing gestalt “good continuation” and perceptual organization needed for human-like contour-integration and uncrowding. More broadly, these results raise the possibility that in human vision, later stages of processing play a more prominent role in perceptual-organization than implied by theories focused on recurrence and early lateral connections.more » « lessFree, publicly-accessible full text available August 18, 2026
An official website of the United States government
