skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dou, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In-bed postures offer valuable information about an individual's sleep quality and overall health conditions, particularly for patients with sleep apnea. However, current in-bed posture classification systems lack privacy-friendly and easy-to-install options. Furthermore, existing solutions do not consider variations between patients and are typically trained only once, neglecting the utilization of time consistency and unlabeled data from new patients. To address these limitations, this paper builds on a seismic sensor to introduce a novel sleep posture framework, which comprises two main components, namely, the Multi-Granularity Supervised Contrastive Learning (MGSCL) module and the ensemble Online Adaptation (oa) module. Unlike most existing contrastive learning frameworks that operate at the sample level, MGSCL leverages multi-granular information, operating not only at the sample level but also at the group level. The oa module enables the model to adapt to new patient data while ensuring time consistency in sleep posture predictions. Additionally, it quantifies model uncertainty to generate weighted predictions, further enhancing performance. Evaluated on a dataset of 100 patients collected at a clinical research center, MGSCLoa achieved an average accuracy of 91.67% and an average F1 score of 91.53% with only 40 seconds of labeled data per posture. In a Phase 2 evaluation with 11 participants over 13 nights in home settings, the framework reached an average accuracy of 85.37% and a weighted F1 score of 83.59% using just 3 minutes of labeled data per common posture for each participant. These results underscore the potential of seismic sensor-based in-bed posture classification for assessing sleep quality and related health conditions. 
    more » « less
    Free, publicly-accessible full text available June 9, 2026
  2. Free, publicly-accessible full text available December 4, 2025
  3. In automated sleep monitoring systems, bed occupancy detection is the foundation or the first step before other downstream tasks, such as inferring sleep activities and vital signs. The existing methods do not generalize well to real-world environments due to single environment settings and rely on threshold-based approaches. Manually selecting thresholds requires observing a large amount of data and may not yield optimal results. In contrast, acquiring extensive labeled sensory data poses significant challenges regarding cost and time. Hence, developing models capable of generalizing across diverse environments with limited data is imperative. This paper introduces SeismoDot, which consists of a self-supervised learning module and a spectral-temporal feature fusion module for bed occupancy detection. Unlike conventional methods that require separate pre-training and fine-tuning, our self-supervised learning module is co-optimized with the primary target task, which directs learned representations toward a task-relevant embedding space while expanding the feature space. The proposed feature fusion module enables the simultaneous exploitation of temporal and spectral features, enhancing the diversity of information from both domains. By combining these techniques, SeismoDot expands the diversity of embedding space for both the temporal and spectral domains to enhance its generalizability across different environments. SeismoDot not only achieves high accuracy (98.49%) and F1 scores (98.08%) across 13 diverse environments, but it also maintains high performance (97.01% accuracy and 96.54% F1 score) even when trained with just 20% (4 days) of the total data. This demonstrates its exceptional ability to generalize across various environmental settings, even with limited data availability. 
    more » « less
  4. null (Ed.)