In-bed postures offer valuable information about an individual's sleep quality and overall health conditions, particularly for patients with sleep apnea. However, current in-bed posture classification systems lack privacy-friendly and easy-to-install options. Furthermore, existing solutions do not consider variations between patients and are typically trained only once, neglecting the utilization of time consistency and unlabeled data from new patients. To address these limitations, this paper builds on a seismic sensor to introduce a novel sleep posture framework, which comprises two main components, namely, the Multi-Granularity Supervised Contrastive Learning (MGSCL) module and the ensemble Online Adaptation (oa) module. Unlike most existing contrastive learning frameworks that operate at the sample level, MGSCL leverages multi-granular information, operating not only at the sample level but also at the group level. The oa module enables the model to adapt to new patient data while ensuring time consistency in sleep posture predictions. Additionally, it quantifies model uncertainty to generate weighted predictions, further enhancing performance. Evaluated on a dataset of 100 patients collected at a clinical research center, MGSCLoa achieved an average accuracy of 91.67% and an average F1 score of 91.53% with only 40 seconds of labeled data per posture. In a Phase 2 evaluation with 11 participants over 13 nights in home settings, the framework reached an average accuracy of 85.37% and a weighted F1 score of 83.59% using just 3 minutes of labeled data per common posture for each participant. These results underscore the potential of seismic sensor-based in-bed posture classification for assessing sleep quality and related health conditions.
more »
« less
Self-Supervised Representation Learning and Temporal-Spectral Feature Fusion for Bed Occupancy Detection
In automated sleep monitoring systems, bed occupancy detection is the foundation or the first step before other downstream tasks, such as inferring sleep activities and vital signs. The existing methods do not generalize well to real-world environments due to single environment settings and rely on threshold-based approaches. Manually selecting thresholds requires observing a large amount of data and may not yield optimal results. In contrast, acquiring extensive labeled sensory data poses significant challenges regarding cost and time. Hence, developing models capable of generalizing across diverse environments with limited data is imperative. This paper introduces SeismoDot, which consists of a self-supervised learning module and a spectral-temporal feature fusion module for bed occupancy detection. Unlike conventional methods that require separate pre-training and fine-tuning, our self-supervised learning module is co-optimized with the primary target task, which directs learned representations toward a task-relevant embedding space while expanding the feature space. The proposed feature fusion module enables the simultaneous exploitation of temporal and spectral features, enhancing the diversity of information from both domains. By combining these techniques, SeismoDot expands the diversity of embedding space for both the temporal and spectral domains to enhance its generalizability across different environments. SeismoDot not only achieves high accuracy (98.49%) and F1 scores (98.08%) across 13 diverse environments, but it also maintains high performance (97.01% accuracy and 96.54% F1 score) even when trained with just 20% (4 days) of the total data. This demonstrates its exceptional ability to generalize across various environmental settings, even with limited data availability.
more »
« less
- PAR ID:
- 10594790
- Publisher / Repository:
- IEEE Xplore
- Date Published:
- Journal Name:
- Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
- Volume:
- 8
- Issue:
- 3
- ISSN:
- 2474-9567
- Page Range / eLocation ID:
- 1 to 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We are interested in representation learning in self-supervised, supervised, and semi-supervised settings. Some recent self-supervised learning methods like mean-shift (MSF) cluster images by pulling the embedding of a query image to be closer to its nearest neighbors (NNs). Since most NNs are close to the query by design, the averaging may not affect the embedding of the query much. On the other hand, far away NNs may not be semantically related to the query. We generalize the mean-shift idea by constraining the search space of NNs using another source of knowledge so that NNs are far from the query while still being semantically related. We show that our method (1) outperforms MSF in SSL setting when the constraint utilizes a different augmentation of an image from the previous epoch, and (2) outperforms PAWS in semi-supervised setting with less training resources when the constraint ensures that the NNs have the same pseudo-label as the query.more » « less
-
We are interested in representation learning in self-supervised, supervised, and semi-supervised settings. Some recent self-supervised learning methods like mean-shift (MSF) cluster images by pulling the embedding of a query image to be closer to its nearest neighbors (NNs). Since most NNs are close to the query by design, the averaging may not affect the embedding of the query much. On the other hand, far away NNs may not be semantically related to the query. We generalize the mean-shift idea by constraining the search space of NNs using another source of knowledge so that NNs are far from the query while still being semantically related. We show that our method (1) outperforms MSF in SSL setting when the constraint utilizes a different augmentation of an image from the previous epoch, and (2) outperforms PAWS in semi-supervised setting with less training resources when the constraint ensures that the NNs have the same pseudo-label as the query.more » « less
-
Human context recognition (HCR) using sensor data is a crucial task in Context-Aware (CA) applications in domains such as healthcare and security. Supervised machine learning HCR models are trained using smartphone HCR datasets that are scripted or gathered in-the-wild. Scripted datasets are most accurate because of their consistent visit patterns. Supervised machine learning HCR models perform well on scripted datasets but poorly on realistic data. In-the-wild datasets are more realistic, but cause HCR models to perform worse due to data imbalance, missing or incorrect labels, and a wide variety of phone placements and device types. Lab-to-field approaches learn a robust data representation from a scripted, high-fidelity dataset, which is then used for enhancing performance on a noisy, in-the-wild dataset with similar labels. This research introduces Triplet-based Domain Adaptation for Context REcognition (Triple-DARE), a lab-to-field neural network method that combines three unique loss functions to enhance intra-class compactness and inter-class separation within the embedding space of multi-labeled datasets: (1) domain alignment loss in order to learn domain-invariant embeddings; (2) classification loss to preserve task-discriminative features; and (3) joint fusion triplet loss. Rigorous evaluations showed that Triple-DARE achieved 6.3% and 4.5% higher F1-score and classification, respectively, than state-of-the-art HCR baselines and outperformed non-adaptive HCR models by 44.6% and 10.7%, respectively.more » « less
-
Understanding the fatigue behavior and accurately predicting the fatigue life of laser powder bed fusion (L-PBF) parts remain a pressing challenge due to complex failure mechanisms, time-consuming tests, and limited fatigue data. This study proposes a physics-informed data-driven framework, a multimodal transfer learning (MMTL) framework, to understand process-defect-fatigue relationships in L-PBF by integrating various modalities of fatigue performance, including process parameters, XCT-inspected defects, and fatigue test conditions. It aims to leverage a pre-trained model with abundant process and defect data in the source task to predict fatigue life nondestructive with limited fatigue test data in the target task. MMTL employs a hierarchical graph convolutional network (HGCN) to classify defects in the source task by representing process parameters and defect features in graphs, thereby enhancing its interpretability. The feature embedding learned from HGCN is then transferred to fatigue life modeling in neural network layers, enabling fatigue life prediction for L-PBF parts with limited data. MMTL validation through a numerical simulation and real-case study demonstrates its effectiveness, achieving an F1-score of 0.9593 in defect classification and a mean absolute percentage log error of 0.0425 in fatigue life prediction. MMTL can be extended to other applications with multiple modalities and limited data.more » « less
An official website of the United States government

