skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Downer, Michael_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We visualize plasma bubbles driven by 0.67 PW laser pulses in a plasma of density ne≈5×1017cm−3 by imaging Faraday rotation patterns imprinted on linearly polarized probe pulses of wavelength λpr=1.05  μm and duration τpr=2 or 1 ps that cross the bubble's path at right angles. When the bubble captures and accelerates tens to hundreds of pC of electron charges, we observe two parallel streaks of length cτpr straddling the drive pulse propagation axis, separated by ∼45 μm, in which probe polarization rotates by 0.3° to more than 5° in opposite directions. Accompanying simulations show that they result from Faraday rotation within portions of dense bubble side walls that are pervaded by the azimuthal magnetic field of accelerating electrons during the probe transit across the bubble. Analysis of the width of the streaks shows that quasi-monoenergetic high-energy electrons and trailing lower energy electrons inside the bubble contribute distinguishable portions of the observed signals, and relativistic flow of sheath electrons suppresses Faraday rotation from the rear of the bubble. The results demonstrate favorable scaling of Faraday rotation diagnostics to 40× lower plasma density than previously demonstrated. 
    more » « less
  2. Abstract A preliminary measurement of the second‐order nonlinear optical susceptibility of symmetric, coupled, InAs/AlSb multiple quantum well (MQW) structures is acquired through optical second‐harmonic generation (SHG) at fundamental wavelength 1.55 µm. High quality crystalline MQW structures of variable thickness and corresponding bulk AlSb control samples are achieved using a digital alloy epitaxial growth technique that avoids cluster formation and phase segregation. All samples are grown in between a GaSb cap and substrate layer. To isolate SHG from the MQW (or control) layers of interest from cap and substrate contributions, a multilayer optical response matrix model is built and independently tested by accurately reproducing linear reflectivity spectra. While a simplified response matrix analysis of SHG based solely on bulk χ(2)s does not reproduce the distinct SHG responses of the two sets of samples, the inclusion of an additional interface SHG contribution leads to a successful fit of the data and implies . The results demonstrate a proof‐of‐concept quantification of χ(2)in symmetric MQWs and suggest the possibility of engineering χ(2)in these structures, particularly with the introduction of well asymmetries. 
    more » « less