skip to main content


Title: A Study of Second‐Order Susceptibility in Digital Alloy‐Grown InAs/AlSb Multiple Quantum Wells
Abstract

A preliminary measurement of the second‐order nonlinear optical susceptibility of symmetric, coupled, InAs/AlSb multiple quantum well (MQW) structures is acquired through optical second‐harmonic generation (SHG) at fundamental wavelength 1.55 µm. High quality crystalline MQW structures of variable thickness and corresponding bulk AlSb control samples are achieved using a digital alloy epitaxial growth technique that avoids cluster formation and phase segregation. All samples are grown in between a GaSb cap and substrate layer. To isolate SHG from the MQW (or control) layers of interest from cap and substrate contributions, a multilayer optical response matrix model is built and independently tested by accurately reproducing linear reflectivity spectra. While a simplified response matrix analysis of SHG based solely on bulk χ(2)s does not reproduce the distinct SHG responses of the two sets of samples, the inclusion of an additional interface SHG contribution leads to a successful fit of the data and implies . The results demonstrate a proof‐of‐concept quantification of χ(2)in symmetric MQWs and suggest the possibility of engineering χ(2)in these structures, particularly with the introduction of well asymmetries.

 
more » « less
Award ID(s):
1838435
PAR ID:
10369539
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
10
Issue:
15
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atomically thin transition metal dichalcogenides (TMDs) in their excited states can serve as exceptionally small building blocks for active optical platforms. In this scheme, optical excitation provides a practical approach to control light‐TMD interactions via the photocarrier generation, in an ultrafast manner. Here, it is demonstrated that via a controlled generation of photocarriers the second‐harmonic generation (SHG) from a monolayer MoS2crystal can be substantially modulated up to ≈55% within a timeframe of ≈250 fs, a set of performance characteristics that showcases the promise of low‐dimensional materials for all‐optical nonlinear data processing. The combined experimental and theoretical study suggests that the large SHG modulation stems from the correlation between the second‐order dielectric susceptibility χ(2)and the density of photoexcited carriers in MoS2. Indeed, the depopulation of the conduction band electrons, at the vicinity of the high‐symmetryK/K′points of MoS2, suppresses the contribution of interband electronic transitions in the effective χ(2)of the monolayer crystal, enabling the all‐optical modulation of the SHG signal. The strong dependence of the second‐order optical response on the density of photocarriers reveals the promise of time‐resolved nonlinear characterization as an alternative route to monitoring carrier dynamics in excited states of TMDs.

     
    more » « less
  2. Abstract Diamond has attracted great interest as an appealing material for various applications ranging from classical to quantum optics. To date, Raman lasers, single photon sources, quantum sensing and quantum communication have been demonstrated with integrated diamond devices. However, studies of the nonlinear optical properties of diamond have been limited, especially at the nanoscale. Here, a metasurface consisting of plasmonic nanogap cavities is used to enhance both χ (2) and χ (3) nonlinear optical processes in a wedge-shaped diamond slab with a thickness down to 12 nm. Multiple nonlinear processes were enhanced simultaneously due to the relaxation of phase-matching conditions in subwavelength plasmonic structures by matching two excitation wavelengths with the fundamental and second-order modes of the nanogap cavities. Specifically, third-harmonic generation (THG) and second-harmonic generation (SHG) are both enhanced 1.6 × 10 7 -fold, while four-wave mixing is enhanced 3.0 × 10 5 -fold compared to diamond without the metasurface. Even though diamond lacks a bulk χ (2) due to centrosymmetry, the observed SHG arises from the surface χ (2) of the diamond slab and is enhanced by the metasurface elements. The efficient, deeply subwavelength diamond frequency converter demonstrated in this work suggests an approach for conversion of color center emission to telecom wavelengths directly in diamond. 
    more » « less
  3. The lack of a bulk second-order nonlinearity (χ(2)) in silicon nitride (Si3N4) keeps this low-loss, CMOS-compatible platform from key active functions such as Pockels electro-optic (EO) modulation and efficient second harmonic generation (SHG). We demonstrate a successful induction ofχ(2)in Si3N4through electrical poling with an externally-applied field to align the Si-N bonds. This alignment breaks the centrosymmetry of Si3N4, and enables the bulkχ(2). The sample is heated to over 500°C to facilitate the poling. The comparison between the EO responses of poled and non-poled Si3N4, measured using a Si3N4micro-ring modulator, shows at least a 25X enhancement in ther33EO component. The maximumχ(2)we obtain through poling is 0.30pm/V. We observe a remarkable improvement in the speed of the measured EO responses from 3 GHz to 15 GHz (3 dB bandwidth) after the poling, which confirms theχ(2)nature of the EO response induced by poling. This work paves the way for high-speed active functions on the Si3N4platform.

     
    more » « less
  4. Abstract

    New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibilityχ(2)has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/Al2O3epitaxial multilayers, to overcome that limitation. This platform has an extremely highχ(2)of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10−4at an incident pulse intensity of 10 GW/cm2, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices.

     
    more » « less
  5. Abstract

    Polar dielectrics are key materials of interest for infrared (IR) nanophotonic applications due to their ability to host phonon‐polaritons that allow for low‐loss, subdiffractional control of light. The properties of phonon‐polaritons are limited by the characteristics of optical phonons, which are nominally fixed for most “bulk” materials. Superlattices composed of alternating atomically thin materials offer control over crystal anisotropy through changes in composition, optical phonon confinement, and the emergence of new modes. In particular, the modified optical phonons in superlattices offer the potential for so‐called crystalline hybrids whose IR properties cannot be described as a simple mixture of the bulk constituents. To date, however, studies have primarily focused on identifying the presence of new or modified optical phonon modes rather than assessing their impact on the IR response. This study focuses on assessing the impact of confined optical phonon modes on the hybrid IR dielectric function in superlattices of GaSb and AlSb. Using a combination of first principles theory, Raman, FTIR, and spectroscopic ellipsometry, the hybrid dielectric function is found to track the confinement of optical phonons, leading to optical phonon spectral shifts of up to 20 cm−1. These results provide an alternative pathway toward designer IR optical materials.

     
    more » « less